
MASTER THESIS

Lukáš Folwarczný

Graph communication protocols

Computer Science Institute of Charles University

Supervisor of the master thesis: prof. RNDr. Pavel Pudlák, DrSc.
Study programme: Computer Science

Study branch: Theoretical Computer Science

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In Prague, July 17, 2018 Lukáš Folwarczný

i

I wish to express my sincere gratitude to my supervisor Pavel Pudlák for his
warmhearted guidance through the work on this thesis. Furthermore, I thank
Ondřej Bouchala and Ivo Fukala for comments. Last but not least, I thank my
family and friends for their precious support during my studies.

ii

Title: Graph communication protocols

Author: Lukáš Folwarczný

Institute: Computer Science Institute of Charles University

Supervisor: prof. RNDr. Pavel Pudlák, DrSc., Institute of Mathematics of the
Czech Academy of Sciences

Abstract: Graph communication protocols are a generalization of classical com-
munication protocols to the case when the underlying graph is a directed acyclic
graph. Motivated by potential applications in proof complexity, we study vari-
ants of graph communication protocols and relations between them.
The main result is a comparison of the strength of two types of protocols, pro-
tocols with equality and protocols with a conjunction of a constant number of
inequalities. We prove that protocols of the first type are at least as strong as
protocols of the second type in the following sense: For a Boolean function f ,
if there is a protocol with a conjunction of a constant number of inequalities of
polynomial size solving f , then there is a protocol with equality of polynomial size
solving f . We also introduce two new types of graph communication protocols,
protocols with disjointness and protocols with non-disjointness, and prove that
the first type is at least as strong as the previously considered protocols and that
the second type is too strong to be useful for applications.

Keywords: communication complexity, Boolean functions, Boolean circuits

iii

Contents

Introduction 2

1 Preliminaries 5

2 Protocols 6
2.1 General protocols . 6
2.2 Protocols with inequality and equality 7
2.3 Main theorems and discussion . 7
2.4 Protocols with (non-)disjointness 11

3 Simulations 14
3.1 Degree reduction . 14
3.2 Protocols with a conjunction of inequalities 16

Conclusion 24

Bibliography 25

1

Introduction
Proving lower bounds is one of the principal aims of circuit complexity and proof
complexity. Graph communication protocols come into play as a tool to trans-
late the task of proving these lower bounds into the realm of communication
complexity. This thesis studies variants of graph communication protocols and
the relations between them.

Circuit complexity. Boolean circuits are a direct generalization of Boolean
formulas where each intermediate result of the computation may be used repea-
tedly; a formal definition is given in Chapter 1. Circuit complexity is then the
study of the computational power of circuits. With a special focus on lower
bounds, this field is surveyed in the book by Jukna [Juk12].

Proof complexity. Propositional proof system, in the sense of Cook and Reck-
how [CR79], is a sound and complete system for propositional tautologies with
proofs verifiable in polynomial time. Examples of propositional proof systems in-
clude resolution, (extended) Frege systems, sequent calculus and cutting planes.
Studying the strength of various propositional proof systems is the essence of
proof complexity. A reference for this field is the book by Kraj́ıček [Kra18].

It is worth noting that high-level ideas of complexity theory in general, in-
cluding both circuit complexity and proof complexity, are explained in the book
by Pudlák [Pud13].

Lower bounds. In circuit complexity, an (unconditional) lower bound for a cer-
tain class of circuits C and a function f is a theorem stating that the least size
(or depth) of a circuit from C computing f is bounded from below by a certain
function. In proof complexity, an (unconditional) lower bound is analogously
a theorem stating that for a certain proof system P and a tautology φ the least
length of a proof of φ in P is bounded from below by a certain function. A con-
ditional lower bound is a theorem of the same kind, but proved under some as-
sumption from complexity theory. Conditional lower bounds are not considered
in this thesis.

Using a counting argument, Shannon [Sha49] proved that most functions re-
quire circuits of size at least 2n/n. Contrary to this fact, no explicit function
has been proven to require superpolynomial circuits. Such lower bounds are
known only for restricted classes of circuits. In particular, lower bounds for
bounded depth circuits were proved independently by Ajtai [Ajt83] and Furst et
al. [FSS84]. The lower bounds for monotone circuits, proved by Razborov [Raz85]
and improved by Alon and Bopanna [AB87], are especially relevant for this the-
sis. An important recent result is the lower bound by Williams [Wil14] for ACC
circuits; a general exposition of the relationship between SAT solving and lower
bounds which lead to this result is given by Santhanam [San12].

In the context of proof complexity, the first strong results are an exponen-
tial lower bound for resolution by Haken [Hak85] (explained in the form of
a game by Pudlák [Pud00]) and a superpolynomial lower bound for constant
depth Frege systems by Ajtai [Ajt94] (an exponential lower bound was obtained

2

by Kraj́ıček [Kra94]). Nowadays, there are two or three general lower bound
methods: the (random) restriction method (introduced in [FSS84]), feasible in-
terpolation and also adversary argument is sometimes considered to be a general
method.

Feasible interpolation. The feasible interpolation method was invented by
Kraj́ıček (idea formulated in [Kra94], applied in [Kra97]). In the basic setup, fea-
sible interpolation reduces the task of proving a lower bound for a proof system P
to proving a lower bound for Boolean circuits separating two NP sets. In the case
of monotone feasible interpolation, lower bounds for monotone Boolean circuits
are enough. However, lower bounds for different objects than monotone Boolean
circuits may be used as well.

Motivation. Limits of monotone feasible interpolation by monotone Boolean
circuits were already considered in the aforementioned paper by Kraj́ıček [Kra97,
Section 9]. However, general limits of monotone feasible interpolation are not
known. The first result when monotone feasible interpolation was used with
another computational model than Boolean circuits is due to Pudlák [Pud97]:
He defined a generalization of monotone Boolean circuits called monotone real
circuits (which were later proved by Rosenbloom [Ros97] to be strictly stronger
than monotone Boolean circuits) and proved lower bounds for this model which
lead, via monotone feasible interpolation, to lower bounds for the cutting planes
proof system.

Studying graph communication protocols, considered by Kraj́ıček [Kra18] to
be “the primary objects” for feasible interpolation, is a way which could lead to
superpolynomial lower bounds for proof systems for which no superpolynomial
lower bounds are known. It could also lead to alternative proofs of known lower
bounds; possibly for different tautologies.

An example of a proof system, belonging to the class of combined proof
systems, for which no superpolynomial lower bound is known and for which
monotone feasible interpolation via graph communication protocols could work
is an extension of resolution called Res-lin or R(LIN) introduced by Itsykson
and Sokolov [IS14] who also proved lower bounds for the tree-like version of this
proof system. A different approach which could work for this proof system is
randomized feasible interpolation due to Kraj́ıček [Kra16].

Communication complexity. The field of communication complexity started
in 1979 with the paper of Yao [Yao79]. The subject of this field is to study the
complexity of problems when the input is distributed among several parties. In
the basic two-party scenario, there are two parties with unlimited computational
power, usually called Alice and Bob. Each of the parties receives its own part of
the input; Alice x ∈ {0, 1}n and Bob y ∈ {0, 1}n. The goal is to compute a given
function f(x, y) while exchanging the least number of bits between the parties.
The computation is done using a specified protocol describing the acts of the
parties. The applications of communication complexity include the analysis of
data structures, streaming algorithms and of course proof complexity and circuit
complexity. Details and a survey of the field is in the book by Kushilevitz and
Nisan [KN97].

3

Karchmer-Wigderson game. Karchmer and Wigderson [KW88] proved the
following theorem: For a Boolean function f , the minimum depth of a Boolean
circuit computing f is equal to the communication complexity (that is the depth
of a protocol) of a certain relation defined for f . There is also a monotone version
of the relation for monotone circuits.

Graph communication protocols. In classical communication complexity,
the measure of protocols is their depth and hence one can only consider protocols
with the underlying graph being a tree. Graph communication protocols, that
is protocols with the underlying graph being a directed acyclic graph, go back
to Razborov [Raz95]. Razborov, inspired by Karchmer and Wigderson, used the
size of certain protocols to characterize the size of circuits. See Pudlák [Pud10]
or Sokolov [Sok17] for a survey of this topic. We give more details on the origin
of graph communication protocols in Chapter 2.

Our contribution. We study several types of graph communication protocols.
The main contribution is a comparison of the strength of two types of protocols,
protocols with equality and protocols with a conjunction of a constant number
of inequalities. We prove that protocols of the first type are at least as strong
as protocols of the second type in the following sense: For a Boolean function f ,
if there is a protocol with a conjunction of a constant number of inequalities of
polynomial size solving f , then there is a protocol with equality of polynomial
size solving f . We also discuss the results, and we formulate and prove several
simple claims illustrating the properties of the considered protocols.

Finally, we introduce two new types of graph communication protocols, pro-
tocols with disjointness and protocols with non-disjointness, and prove that the
first type is at least as strong as the previously considered protocols and that the
second type is too strong to be useful for applications.

Outline. Basic concepts and notations are introduced in Chapter 1. Definitions
of protocols, their properties and statements of results are given in Chapter 2.
The proofs of the two key lemmas are postponed to Chapter 3.

4

1. Preliminaries
Notations and basic concepts are introduced in this chapter.

Sets. We use the notation

[n] := {1, 2, . . . , n};
[n]0 := {0, 1, . . . , n};

ω := {0, 1, . . . }.

By 2<ω, we denote the set of all finite subsets of ω.

Graphs. A directed graph is a pair (V, E) with E ⊆ V × V . Elements of V are
called vertices; elements of E are called edges. A directed acyclic graph (DAG)
is a directed graph without a directed cycle, i.e. a sequence of edges in the form
(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1). The in-degree (out-degree) of a vertex v
is the number of u ∈ V such that (u, v) ∈ E ((v, u) ∈ E). Vertices with in-degree
zero are called sources; vertices with out-degree zero are called sinks. A (directed)
tree is a directed acyclic graph with one vertex of in-degree 0 and all other vertices
of in-degree 1.

Boolean functions. The set {0, 1}n is the set of all n-bit sequences. For
x ∈ {0, 1}n, we denote the bits of x by x1, . . . , xn. A (total) n-bit Boolean
function is a function f : {0, 1}n → {0, 1}. A Boolean functions is monotone
if (∀i ∈ [n])xi ≤ yi implies f(x) ≤ f(y). A partial Boolean function is a func-
tion f : S → {0, 1} for some S ⊆ {0, 1}n. A partial monotone Boolean function
is a partial Boolean function which can be extended to some total monotone
Boolean function. We use the notation f−1(b) = {x ∈ {0, 1}n | f(x) = b} for
b ∈ {0, 1}.

Boolean circuits. A Boolean circuit (in the de Morgan basis) is a directed
acyclic graph G = (V, E) with labeled vertices such that there are 2n+2 sources,
labeled with x1, . . . , xn, ¬x1, . . . , ¬xn, 0, 1 and there is one sink; all non-source
vetices have in-degree two and are labeled with ∧ or ∨. The circuit computes
an n-bit Boolean function in the obvious way: Sources are assigned the values
of x1, . . . , xn, ¬x1, . . . , ¬xn, 0 and 1. Vertices labeled with ∧ or ∨ are assigned
the conjunction or disjunction of its predecessors. The output of the circuit is
the value assigned to the sink. A Boolean circuit is monotone if there are only
n + 2 sources labeled with x1, . . . , xn, 0 and 1.

KW game. The task of the monotone Karchmer-Wigderson game for a partial
monotone Boolean function f is, given x ∈ f−1(0) and y ∈ f−1(1), to find an
index i such that xi = 0 ∧ yi = 1. (Observe that there is always at least one such
index i.)

5

2. Protocols
Graph communication protocols are introduced and defined in the beginning of
this chapter. After the definitions we state the main theorems, discuss them and
prove several related claims. Finally, we define two new types of protocols and
prove two theorems concerning their strength.

2.1 General protocols
Karchmer and Wigderson [KW88] considered classical tree-like (i.e. the under-
lying graph is a tree) communication protocols and their depth to characterize
the depth of circuits. Dag-like protocols (i.e. the underlying graph is a directed
acyclic graph) considered in this thesis go back to Razborov [Raz95] who was
considering the size of protocols to characterize the size of circuits. An explicit
definition of these protocols was given by Kraj́ıček [Kra97]. Our definition is
a generalization of the definition by Hrubeš and Pudlák [HP18]. In comparison
with [Kra97], only the monotone version is defined and the strategy function is
omitted.
Definition 1. Let n ≥ 1 be a natural number. A DAG communication protocol
of degree d with the feasibility relation F is a directed acyclic graph G = (V, E)
and a relation F ⊆ {0, 1}n × {0, 1}n × V , such that

(i) G has one source v0 (a node of in-degree zero) and the out-degree of every
vertex is at most d,

(ii) for every sink ℓ (a node of out-degree zero), there exists an index i such that
for every x, y ∈ {0, 1}n it holds (x, y, ℓ) ∈ F iff xi = 0 and yi = 1.

Let f be a partial monotone Boolean function in n variables. We say that the
protocol solves the monotone KW game for f (or simply solves f), if for every
x ∈ f−1(0) and y ∈ f−1(1),

(a) (x, y, v0) ∈ F ,

(b) for every v ∈ V with p ≥ 1 children u1, . . . , up, if (x, y, v) ∈ F then there
exists ui with (x, y, ui) ∈ F .

The size of a protocol is the number of vertices.
In the discussion, we write only protocols instead of DAG communication

protocols. As in [HP18], we say that a vertex v is feasible for x, y if (x, y, v) ∈ F .
By definition, the source is feasible for any x ∈ f−1(0), y ∈ f−1(1). The protocol
solves the monotone KW game in the following sense: Given x ∈ f−1(0) and
y ∈ f−1(1) and any vertex v which is feasible for x, y (it is crucial that this holds
for any feasible vertex, not just the source), we can find the solution to the KW
game by traversing the graph via feasible vertices down to sinks which give us
the solution.

Another general definition was given by Garg et al. [GGKS18, Section 2.1]. In
their definition degree is fixed to 2 and general search problems are considered.
If we restrict our definition to degree 2 and their definition to the monotone KW
game, the definitions become equivalent.

6

2.2 Protocols with inequality and equality
The definition of what we call a DAG communication protocol with inequality
was independently introduced by Hrubeš and Pudlák [HP18] and Sokolov [Sok17]
(Sokolov considers only protocols of degree 2). Before that, Kraj́ıček [Kra98]
considered a different type of protocols with inequality.

Definition 2. A DAG communication protocol of degree d with inequality is
a DAG communication protocol of degree d with the feasibility relation F such
that the relation F may be expressed as follows: For each vertex v ∈ V , there is
a pair of functions r0

v, r1
v : {0, 1}n → R such that for all x, y ∈ {0, 1}n, it holds

(x, y, v) ∈ F iff r0
v(x) < r1

v(y).

Hrubeš and Pudlák [HP18] proved that the size of the minimum protocol of
degree d with inequality solving f and the size of the minimum d-ary monotone
real circuit computing f are equal (definition of monotone real circuits may be
found in [Pud97] or [HP18]). That implies that the exponential lower bounds
due to Pudlák [Pud97] for monotone real circuits hold also for protocols with
inequality.

Replacing inequality with equality or a conjunction of inequalities, we obtain
the following two definitions:

Definition 3. A DAG communication protocol of degree d with equality is
a DAG communication protocol of degree d with the feasibility relation F such
that the relation F may be expressed as follows: For each vertex v ∈ V there is
a pair of functions r0

v, r1
v : {0, 1}n → R such that for all x, y ∈ {0, 1}n it holds

(x, y, v) ∈ F iff r0
v(x) = r1

v(y).

Definition 4. A DAG communication protocol of degree d with a conjunction
of c inequalities is a DAG communication protocol of degree d with the feasibility
relation F such that the relation F may be expressed as follows: For each vertex
v ∈ V , there are c pairs of functions rj,0

v , rj,1
v : {0, 1}n → R for j ∈ [c]. The

functions satisfy for all x, y ∈ {0, 1}n (x, y, v) ∈ F iff r1,0
v (x) < r1,1

v (y) ∧ · · · ∧
rc,0

v (x) < rc,1
v (y).

All three types of the protocols defined in this section are mentioned by Garg
et al. [GGKS18] who name the protocols after the form of the feasible sets in the
protocol. For a given v, the feasible set for v is the set of all pairs (x, y) such that
(x, y, v) ∈ F . For protocols with inequality, the feasible sets are combinatorial
triangles (definition may be found in [GGKS18]). For protocols with equality,
the feasible sets are block-diagonal. And for protocols with a conjunction of
c inequalities, the feasible sets are intersections of c combinatorial triangles.

2.3 Main theorems and discussion
We are ready to state our two main theorems:

Theorem 5. Let P be a DAG communication protocol of degree d with inequality
solving an n-bit partial monotone Boolean function f . If the size of P is s, then
there exists a DAG communication protocol of degree 2 with equality solving f
whose size is O(snd+1).

7

Theorem 6. Let c ≥ 2. Let P be a DAG communication protocol of degree d
with a conjunction of c inequalities solving an n-bit partial monotone Boolean
function f . If the size of P is s, then there exists a DAG communication protocol
of degree 2 with equality solving f whose size is O(scd(c + d)(n + 1)4c+2d−5).

Both theorems are proved in two steps. The first step in the proof of Theo-
rem 5 is a transformation of a protocol of degree d to a protocol of degree 2. This
was already done by Hrubeš and Pudlák [HP18, Corollary 6 (ii)]:

Lemma 7. Let P be a DAG communication protocol of degree d with inequality
solving an n-bit partial monotone Boolean function f . If the size of P is s, then
there exists a DAG communication protocol of degree 2 with inequality solving f
whose size is O(snd−2).

In the first step of the proof of Theorem 6, we reduce the degree to 2 while
increasing the number of inequalities to 2c + d − 3:

Lemma 8. Let P be a DAG communication protocol of degree d with a con-
junction of c inequalities solving an n-bit partial monotone Boolean function f .
If the size of P is s, then there exists a DAG communication protocol of degree
2 with a conjunction of 2c + d − 3 inequalities solving f whose size is at most
s · max(cd, d).

It is then enough to prove the following lemma:

Lemma 9. Let P be a DAG communication protocol of degree 2 with a conjunc-
tion of c inequalities solving an n-bit partial monotone Boolean function f . If the
size of the protocol P is s, then there exists a DAG communication protocol of
degree 2 with equality solving f whose size is O (sc(n + 1)2c+1).

Lemma 7 and Lemma 9 for c = 1 together imply Theorem 5. Lemma 8 and
Lemma 9 together imply Theorem 6.

We prove Lemma 8 and Lemma 9 in Chapter 3.
The rest of this section is devoted to a discussion of the two main theorems.
Theorem 5 and Theorem 6 are primarily intended for small values of the

parameter d (e.g. constant). As mentioned above, there are exponential lower
bounds for protocols of degree 2 with inequality and we expect that such lower
bounds also exist for protocols with equality. The next claim shows that protocols
with inequality of degree n can solve any function while having a small size and
therefore we do not expect that the exponents in the theorems could be constant
for large values of d.

Claim 10. For every n-bit partial monotone Boolean function f , there is a DAG
communication protocol of degree n with inequality solving f whose size is n + 1.

Proof. We construct a protocol with a source v0 which has n children ℓ1, . . . , ℓn.
The functions of the source are r0

v0 ≡ 0, r1
v0 ≡ 1. The sink ℓi has functions

r0
ℓi

(z) = r1
ℓi

(z) = zi. The protocol is depicted in Fig. 2.1 and clearly solves f .

We say that a type of protocols A is at least as strong as another type of
protocols B if the following holds: Let f be an n-bit partial monotone Boolean

8

0 < 1

x2 < y2 xn < ynx1 < y1

Figure 2.1: Proof of Claim 10

function. If there is a protocol of type B solving f whose size is polynomial in n,
then there is a protocol of type A whose size is also polynomial in n.

Theorem 5 states that protocols of degree 2 with equality are at least as strong
as protocols of a constant degree with inequality.

We consider the main contribution of Theorem 6 to be in the case d = 2 and
c = 2. In this case, the theorem states that protocols of degree 2 with equality
are at least as strong as protocols of degree 2 with a conjunction of two equalities.
The following claim shows that there is a simple converse statement. Therefore
the two types of protocols are equivalent in the sense of their strength.

Claim 11. Let P be a DAG communication protocol of degree d with equality
solving an n-bit partial monotone Boolean function f . If the size of P is s, then
there exists a DAG communication protocol of degree d with a conjunction of two
inequalities solving f whose size is s.

Proof. We show how to express equality of two real values in the protocol by
a conjunction of two inequalities. Let G = (V, E) be the underlying graph of P .
The constructed protocol P ′ with a conjunction of two inequalities has the same
underlying graph. Consider a vertex v ∈ V with functions r0

v, r1
v : {0, 1}n → R

in P . Define

ε := 1
2 min

{
|r0

v(x) − r1
v(y)|

⏐⏐⏐x, y ∈ {0, 1}n ∧ r0
v(x) ̸= r1

v(y)
}

.

(We set ε to an arbitrary positive value if the set is empty.)
We claim for all x, y ∈ {0, 1}n

r0
v(x) ≤ r1

v(y) ⇔ r0
v(x) − ε < r1

v(y), (2.1)
r0

v(x) ≥ r1
v(y) ⇔ −r0

v(x) − ε < −r1
v(y). (2.2)

The implications from left to right of (2.1) and (2.2) are true because ε > 0.
To prove the opposite implication in (2.1) we reorder the terms on the right as
r0

v(x) − r1
v(y) < ε. It follows that r0

v(x) ≤ r1
v(y) from the definition of ε. Similarly

for (2.2) we reorder the terms as r1
v(y) − r0

v(x) < ε and obtain r0
v(x) ≥ r1

v(y).
Combining the two equivalences (2.1) and (2.2) we obtain

r0
v(x) = r1

v(y) ⇔ r0
v(x) − ε < r1

v(y) ∧ −r0
v(x) − ε < −r1

v(y). (2.3)

It is therefore enough to set q0
v(x) := r0

v(x) − ε, q1
v(y) := r1

v(y), q2
v(x) :=

−r0
v(x) − ε and q3

v(y) := −r1
v(y). We assign these functions to v as the functions

r0
v, . . . , r3

v in Definition 4. The protocol P ′ solves f because of (2.3).

9

0 < 1

x2 < y2

−x1 − " < −y1

−x1 − " < −y1 ^ · · · ^−xn−2 − " < −yn−2

xn−1 < yn−1 xn < yn

x1 < y1

Figure 2.2: Proof of Claim 12

Similarly to Claim 10 proving that protocols of degree n are already too strong,
we can prove that protocols with a conjunction of n − 2 inequalities are also too
strong.

Claim 12. For every n-bit partial monotone Boolean function f , there is a DAG
communication protocol of degree 2 with a conjunction of n−2 inequalities solving
f whose size is 2n − 1.

Proof. We construct a protocol with non-sink vertices v0, . . . , vn−2 and sinks
ℓ1, . . . , ℓn. The sink ℓi has functions rj,0

ℓi
(z) = rj,1

ℓi
(z) = zi for every j ∈ [c].

The vertex vi for i ∈ [n − 3]0 has children vi+1 and ℓi+1; the vertex vn−2 has
children ℓn−1 and ℓn.

This time, we define ε := 1/2 and use the fact, similar to the one in the proof
of Claim 11, that for two bits a, b

a ≥ b ⇔ −a − ε < −b.

For a vertex vi, i ∈ [n − 2]0, we set the functions

r2j−2
vi

(z) = −zj − ε for j ∈ {1, . . . , i};
r2j−1

vi
(z) = −zj for j ∈ {1, . . . , i};

r2j−2 ≡ 0 for j ∈ {i + 1, . . . , c};
r2j−1 ≡ 1 for j ∈ {i + 1, . . . , c}.

See Fig. 2.2 for an illustration. We have constructed a protocol in the sense
of Definition 4. It remains to verify that it solves an arbitrary monotone Boolean
function f . The condition (a) of Definition 1 is satisfied. To prove the condi-
tion (b), consider the vertex vi for i ∈ [n−3]0. Assuming the vertex is feasible for
x ∈ f−1(0), y ∈ f−1(1), it holds xj ≥ yj for j ∈ [i]. There are two possibilities:
Either xi+1 < yi+1 and the son ℓi+1 is feasible or xi+1 ≥ yi+1 and then the son
vi+1 is feasible. Finally, consider the vertex vn−2 and assume that it is feasible for
x, y. Then it holds xj ≥ yj for j ∈ [n − 2]. Because of x ∈ f−1(0) and y ∈ f−1(1),
there is i such that xi < yi. It must hold that i = n − 1 or i = n and therefore at
least one of the sons ℓn−1 and ℓn is feasible.

It is natural to ask whether a reduction of the degree as in Lemma 7 is also
possible for protocols with equality or a conjunction of inequalities. We are not
able to adapt the proof od Hrubeš and Pudlák [HP18] because their proof is

10

based on the fact that protocols with inequality correspond to monotone real
circuits. We do not have a computational model corresponding to the other
types of protocols. However, a similar reduction of the degree for protocols with
equality is a consequence of Theorem 6.

Corollary 13. Let P be a DAG communication protocol of degree d with equality
solving an n-bit partial monotone Boolean function f . If the size of P is s, then
there exists a DAG communication protocol of degree 2 with equality solving f
whose size is O(sd2d(n + 1)2d+3).

Proof. We use Claim 11 to convert P into a protocol P ′ of degree d with a con-
junction of two inequalities whose size is s. Using Theorem 6 for P ′, we obtain
a protocol of degree 2 with equality solving f whose size is O(sd2d(n+1)2d+3).

2.4 Protocols with (non-)disjointness
We introduce two new types of protocols which have not been studied before.

Definition 14. A DAG communication protocol of degree d with disjointness
is a DAG communication protocol of degree d with the feasibility relation F such
that the relation F may be expressed as follows: For each vertex v ∈ V , there is
a pair of functions S0

v , S1
v : {0, 1}n → 2<ω such that for all x, y ∈ {0, 1}n it holds

(x, y, v) ∈ F iff S0
v(x) ∩ S1

v(y) = ∅.

Definition 15. A DAG communication protocol of degree d with non-disjointness
is a DAG communication protocol of degree d with the feasibility relation F such
that the relation F may be expressed as follows: For each vertex v ∈ V , there is
a pair of functions S0

v , S1
v : {0, 1}n → 2<ω such that for all x, y ∈ {0, 1}n it holds

(x, y, v) ∈ F iff S0
v(x) ∩ S1

v(y) ̸= ∅.

We prove that protocols with disjointness are at least as strong as protocols
with equality and that protocols with non-disjointness of small size solve any
monotone Boolean function.

Theorem 16. Let P be a DAG communication protocol of degree d with equality
solving an n-bit partial monotone Boolean function f . If the size of P is s, then
there exists a DAG communication protocol of degree d with disjointness solving
f whose size is s.

Proof. Let P be a protocol with the underlying graph G = (V, E) and functions
r0

v, r1
v as in Definition 3. The constructed protocol P ′ has the same underlying

graph. We show for each vertex v how to express inequality by disjointness. Let

Rv :=
{
r0

v(z)
⏐⏐⏐ z ∈ {0, 1}n

}
∪
{
r1

v(z)
⏐⏐⏐ z ∈ {0, 1}n

}
.

It naturally holds |Rv| ≤ 2n+1. We can therefore encode the values by n + 1 bits.
Formally, we fix an injective function gv : Rv → {0, 1}n+1. Because gv is injective,
for all x, y, we have

gv(r0
v(x)) = gv(r1

v(y)) ⇔ r0
v(x) = r1

v(y).

11

We fix x, y and set a := gv(r0
v(x)) and b := gv(r1

v(y)). For every vertex v ∈ V , we
define

S0
v(x) := {i | i ∈ [n + 1] ∧ ai = 1} ∪ {i + n + 1 | i ∈ [n + 1] ∧ ai = 0} ,

S1
v(y) := {i | i ∈ [n + 1] ∧ bi = 0} ∪ {i + n + 1 | i ∈ [n + 1] ∧ bi = 1} .

We express disjointness as follows:

S0
v(x) ∩ S1

v(y) = ∅
⇔(∀i ∈ [n + 1])(ai = 0 ∨ bi = 1) ∧ (∀i ∈ [n + 1])(ai = 1 ∨ bi = 0)
⇔(∀i ∈ [n + 1])ai = bi ⇔ r0

v(x) = r1
v(y)

We concluded that S0
v(x) ∩ S1

v(y) = ∅ ⇔ r0
v(x) = r1

v(y) which implies that P ′

solves f .

Theorem 17. For every n-bit partial monotone Boolean function f , there is
a protocol of degree 2 with non-disjointness solving f whose size is 2n − 1.

Proof. We use binary search to solve the KW game. The protocol will consist of
vertices of the form v(l, r) for some l, r ∈ [n]. For v(l, r), we define the functions

S0
v(l,r)(z) := {i ∈ {l, . . . , r} | zi = 0} ,

S1
v(l,r)(z) := {i ∈ {l, . . . , r} | zi = 1} .

For every x, y ∈ {0, 1}n, it holds

S0
v(l,r)(x) ∩ S1

v(l,r)(y) ̸= ∅ ⇔ (∃i ∈ {l, . . . , r})(xi = 0 ∧ yi = 1). (2.4)

We define the underlying graph recursively. We add to the graph the vertex
v(1, n) as the root. For every vertex v(l, r), in the graph we do the following: If
l = r, then v(l, r) is a sink. Otherwise, we add two sons

v

(
l,

⌊
l + r

2

⌋)
and v

(⌊
l + r

2

⌋
+ 1, r

)
.

See Fig. 2.3 depicting the case n = 5.
It is a protocol in the sense of Definition 1. It remains to show that it solves

an arbitrary monotone Boolean function f . The source is feasible for x ∈ f−1(0)
and y ∈ f−1(1) because of (2.4) and monotonicity. Consider a vertex v(l, r) with
l < r. For its children v(l,

⌊
l+r

2

⌋
) and v(

⌊
l+r

2

⌋
+ 1, r), it holds

{l, . . . , r} =
{

l, . . . ,

⌊
l + r

2

⌋}
∪̇
{⌊

l + r

2

⌋
+ 1, . . . , r

}
.

Together with (2.4), it implies that if v(l, r) is feasible for x, y, then at least one
of the sons is feasible for x, y.

The size of the protocol is 2n − 1 because the underlying graph is a tree with
n sinks where every non-sink vertex has out-degree 2.

12

v(1; 5)

v(1; 3) v(4; 5)

v(4; 4) v(5; 5)

v(1; 2)

v(3; 3)

v(1; 1) v(2; 2)

Figure 2.3: Proof of Theorem 17

13

3. Simulations
Lemma 8 and Lemma 9 are proven in this chapter.

3.1 Degree reduction
Lemma 8 as stated in Section 2.3:

Lemma 8. Let P be a DAG communication protocol of degree d with a con-
junction of c inequalities solving an n-bit partial monotone Boolean function f .
If the size of P is s, then there exists a DAG communication protocol of degree
2 with a conjunction of 2c + d − 3 inequalities solving f whose size is at most
s · max(cd, d).

Proof. Let G = (V, E) be the underlying graph of P with functions rj,0
v , rj,1

v as in
Definition 4. Similarly to the proof of Claim 11, we define

ε := 1
2min

{⏐⏐⏐rj,0
v (x) − rj,1

v (y)
⏐⏐⏐ ⏐⏐⏐x, y ∈ {0, 1}n ∧ v ∈ V ∧ j ∈ [c] ∧ rj,0

v (x) ̸= rj,1
v (y)

}
.

(We again set ε to an arbitrary positive value if the set is empty.)
It then holds for every x, y ∈ {0, 1}n and v ∈ V , j ∈ [c]

rj,0
v (x) ≥ rj,1

v (y) ⇔ −rj,0
v (x) − ε < −rj,1

v (y).

We denote the functions in the constructed protocol by qj,0
v and qj,1

v . For every
vertex v ∈ V , we put v into the constructed protocol with functions qj,0

v = rj,0
v ,

qj,1
v = rj,1

v for j ∈ [c] and qj,0
v ≡ 0, qj,1

v ≡ 1 for j > c. For every non-sink
vertex v ∈ V with children u1, . . . , up, we add a substructure connecting v with
u1, . . . , up. The idea of the substructure is to test sequentially all children and for
each child test sequentially the inequalities: If the tested inequality is true, we
test the next inequality. If the tested inequality is false, we test the next child.

Fix a non-sink vertex v ∈ V with children u1, . . . , up. If p ≤ 2, we just
connect v with its children. For the rest of the discussion, assume p ≥ 3. We
add all vertices of the form v((i1, . . . , ip′), k) with p′ ∈ [p − 2]0, i1, . . . , ip′ ∈ [c],
k ∈ [c − 1]0. The meaning of the vertex v((i1, . . . , ip′), k) is that the vertex v
is feasible in the original protocol, the child up′+1 is being tested and the first
k inequalities of this child are true. For j ∈ [p′] the inequality r

ij ,0
uj (x) < r

ij ,1
uj (y) is

the first inequality of uj which is false. We denote w = v((i1, . . . , ip′), k). When
p′ = 0 and k = 0, w is just another name for v. It follows from the description of
w that it has the following functions

qj,0
w = rj,0

v and qj,1
w = rj,1

v for j ∈ [c];
qc+j,0

w = −r
ij ,0
uj − ε and qc+j,1

w = −r
ij ,1
uj for j ∈ [p′];

qc+p′+j,0
w = rj,0

up′+1
and qc+p′+j,1

w = rj,1
up′+1

for j ∈ [k];
qj,0

w ≡ 0 and qj,1
w ≡ 1 for j > c + p′ + k.

We describe the children of w:

14

α ^ β1

u1

α ^ :β2

u3

u2 u3

α ^ :β2 ^ γ1

α ^ :β1

u2 u3

α ^ :β1 ^ γ1

α

v

u3

Figure 3.1: The substructure in the proof of Lemma 8 for c = 2 and p = 3

• If p′ < p − 2, the first child of w is v((i1, . . . , ip′ , k + 1), 0). This corresponds
to the case when the inequality rk+1,0

up′+1
(x) < rk+1,1

up′+1
(y) is false and the next

child will be tested.

• If p′ = p − 2, the first child of w is up. Here, up′+1 is the penultimate child
and if it is not feasible (i.e. the inequality rk+1,0

up′+1
(x) < rk+1,1

up′+1
(y) is false), the

last child is automatically feasible.

• If k < c − 1, the second child of w is v((i1, . . . , ip′), k + 1).

• If k = c − 1, the second child of w is up′+1.

See Fig. 3.1 for the substructure in the case c = 2 and p = 3. The formulas
in the figure are

α ≡ r1,0
v (x) < r1,1

v (y) ∧ r2,0
v (x) < r2,1

v (y),
βj ≡ rj,0

u1 (x) < rj,1
u1 (y),

γj ≡ rj,0
u2 (x) < rj,1

u2 (y).

This concludes the description of the protocol and it remains to verify that it
is a valid protocol solving f . By definition, each vertex has out-degree of at most
two. Each substructure is acyclic and has a single source v and sinks u1, . . . , up.
Hence the whole underlying graph of the protocol is acyclic and has a single
source v0. The sinks of the new protocol are the sinks from the original protocol.
Therefore the protocol satisfies the conditions (i) and (ii) of Definition 1.

The condition (a) of Definition 1 is satisfied because the constructed protocol
has the same source with the same functions as the original protocol. It remains
to prove the condition (b).

Consider a vertex w and assume it is feasible for x ∈ f−1(0) and y ∈ f−1(1).
The inequality

rk+1,0
up′ +1(x) < rk+1,1

up′ +1(y) (3.1)
is either true or false.

• If (3.1) is false and p′ < p − 2, then the first child v((i1, . . . , ip′ , k + 1), 0)
is feasible because each of its inequalities is either contained among the

15

`1 `2 `1 `2

`
0

1
`
0

2

Figure 3.2: Modification of the graph in the proof of Lemma 9

inequalities of w or the inequality is −rk+1,0
up′ +1(x) − ε < −rk+1,1

up′ +1(y) which is
equivalent to (3.1) being false.

• If (3.1) is false and p′ = p − 2, then none of the children u1, . . . , up−1 is
feasible. Because w contains inequalities rj,0

v (x) < rj,1
v (y) for j ∈ [c], the

vertex v in the original protocol is feasible and hence at least one of the
children u1, . . . , up is feasible. Therefore the child up is feasible in the
original protocol and also in the constructed protocol.

• If (3.1) is true and k < c − 1, then the child v((i1, . . . , ip′), k + 1) is feasible
because each of its inequalities is either contained among the inequalities
of w or the inequality is (3.1).

• If (3.1) is true and k = c − 1, then up′+1 is feasible for the same reasons as
in the previous case.

For each vertex v ∈ V , we added at most ∑p−2
p′=0 cp′+1 ≤ max(cp, p) vertices.

Therefore the size of the protocol is at most s · max(cd, d).

3.2 Protocols with a conjunction of inequalities
Lemma 9 as stated in Section 2.3:

Lemma 9. Let P be a DAG communication protocol of degree 2 with a conjunc-
tion of c inequalities solving an n-bit partial monotone Boolean function f . If the
size of the protocol P is s, then there exists a DAG communication protocol of
degree 2 with equality solving f whose size is O (sc(n + 1)2c+1).

Proof. Let G = (V, E) be the underlying graph of P with functions rj,0
v and rj,1

v

as in Definition 4. To reduce the number of cases to consider, we modify the
underlying graph. To each vertex with exactly one child, we attach some sink.
After this change, the size of the protocol is the same and the protocol still solves
the function f . If there is only one sink, there is a trivial protocol solving f :
The protocol of size one consisting only of this sink. We can therefore assume
that there are at least two sinks. To reduce the number of cases even further, we
modify the graph in the following way: For every sink ℓ1 ∈ V , we add a new sink
ℓ′

1 with the same functions rj,0
ℓ1 , rj,1

ℓ1 . The children of ℓ1 are ℓ′
1 and ℓ′

2 for some
other original sink ℓ2. The modified protocol still solves f , but now every vertex
has either two non-sink children or two sink children. The size of the modified
protocol is at most 2s. See Fig. 3.2.

16

Suppose w.l.o.g. that rj,0
v (z), rj,1

v (z) ∈ {0, . . . , 2n+1 − 1} for every non-sink
vertex v ∈ V , z ∈ {0, 1}n and j ∈ [c]. (There are at most 2n+1 values of rj,0

v (z)
and rj,1

v (z) for fixed j and v; the only thing that matters is the relative order
of the values.) We consider rj,0

v (z) and rj,1
v (z) to be (n + 1)-bit numbers and

denote by rj,0
v (z)[i] and rj,1

v (z)[i] the i-th most significant bit; that is rj,0
v (z) =∑n+1

i=1 2n+1−irj,0
v (z)[i].

In the constructed procotol with equality, we assume that all outputs of func-
tions at non-sink vertices are finite sequences of bits. (To do that, we fix a bi-
jection between binary sequences and a subset of real numbers. We may for
example identify the sequence b1b2 . . . bℓ with the integer with binary expansion
1b1b2 . . . bℓ.)

In every non-sink vertex v of the constructed protocol, both functions r0
v

and r1
v will have the same fixed number of output bits. Testing the equality of

r0
v(x) = b1b2 . . . bℓ and r1

v(x) = c1c2 . . . cℓ is then equivalent to testing whether the
conjunction

b1 = c1 ∧ · · · ∧ bℓ = cℓ

is true. Conversely, every conjunction of equalities in the form
f1(x) = g1(y) ∧ · · · ∧ fℓ(x) = gℓ(y),

where fi, gi : {0, 1}n → {0, 1}, can be expressed by setting the functions r0
v(x) :=

f1(x)f2(x) . . . fℓ(x) and r1
v(y) := g1(y)g2(y) . . . gℓ(y). The important thing is that

for each equality the left-hand side is a function of x and the right-hand side is
a function of y.

To streamline the description of the protocol, we do not explicitly describe
the functions r0

v(x) and r1
v(y) for each vertex v. Instead, we label vertices with

conjunctions of equalities such that the left-hand side of each equality is a function
of x and the right-hand side of each equality is a function of y. The actual
functions can be deduced using the method from the previous paragraph.

The key idea of the simulation is that an inequality can be expressed as one of
n + 1 equalities. Let a, b be two (n + 1)-bit numbers with the binary expansions
a = a1a2 . . . an+1 and b = b1b2 . . . bn+1. The observation we use is that

a < b ⇔ ∃i ∈ [n + 1]
(
a1 = b1 ∧ · · · ∧ ai−1 = bi−1 ∧ ai = 0 ∧ 1 = bi

)
.

The left-hand side of each equality is a function of a and the right-hand side is
a function of b. Using the method from the previous paragraph for converting
a conjunction of equalities into a single equality, we obtain

a < b ⇔ ∃i ∈ [n + 1](a1a2 . . . ai−1ai1 = b1b2 . . . bi−10bi).
For each non-sink vertex v ∈ V , i ∈ [n+1]0 and j ∈ [c], we define the following

conjunction of equalities

φj,(i,=)
v ≡

i⋀
k=1

(
rj,0

v (x)[k] = rj,1
v (y)[k]

)
.

And for each non-sink vertex v ∈ V , i ∈ [n + 1] and j ∈ [c], we define the
following conjunctions of equalities

φj,(i, ̸=)
v ≡ φj,(i−1,=)

v ∧ rj,0
v (x)[i] = 1 − rj,1

v (y)[i],
φj,(i,<)

v ≡ φj,(i−1,=)
v ∧ rj,0

v (x)[i] = 0 ∧ 1 = rj,1
v (y)[i],

φj,(i,>)
v ≡ φj,(i−1,=)

v ∧ rj,0
v (x)[i] = 1 ∧ 0 = rj,1

v (y)[i].

17

The formula φj,(i,=)
v means that the first i bits of rj,0

v (x) and rj,1
v (y) are equal.

The formula φj,(i, ̸=)
v means that the first i − 1 bits of rj,0

v (x) and rj,1
v (y) are equal

and the i-th bit differs. The meaning of formulas φj,(i,<)
v and φj,(i,>)

v is analogous.
Similarly to expressing inequality as one of n + 1 equalities, we can express

the conjunction of c inequalities as one of (n + 1)c equalities
c⋀

j=1

(
rj,0

v (x) < rj,1
v (y)

)
⇔ (∃(i1, . . . , ic) ∈ [n + 1]c)

c⋀
j=1

φj,(ij ,<)
v .

For each non-sink vertex v and I = (i1, . . . , ic) ∈ [n + 1]c, we define

ΦI
v ≡

c⋀
j=1

φj,(ij ,<)
v .

For each non-sink vertex v and G = (g1, . . . , gc′) where it holds c′ ≤ c and
gj ∈ [n + 1]0 × {=, ̸=, <, >}, we define

ΨG
v ≡

c′⋀
j=1

φj,gj
v .

Now, we construct the protocol P ′ with equality. Let the underlying graph of
the new protocol P ′ be G′ = (V ′, E ′). For each sink ℓ ∈ V with the index i from
Definition 1 (ii), we put ℓ into V ′ with the functions r0

ℓ (z) = zi +1 and r1
ℓ (z) = zi.

For each non-sink vertex v ∈ V , we add (n + 1)c vertices v(I) for I ∈ [n + 1]c.
Each v(I) is labeled with the conjunction ΦI

v.
Let u1 and u2 be the children of a non-sink vertex v ∈ V . If v(I) is feasible

for x ∈ f−1(0) and y ∈ f−1(1), then ΦI
v implies that v is feasible for x and y

in the original protocol. That in turn implies that u1 or u2 is feasible for x and
y. From that it follows that at least one of the vertices in V ′ corresponding to
u1 and u2 (i.e. u1(I), u2(I) for I ∈ [n + 1]c if u1 and u2 are non-sink vertices or
u1 and u2 if u1 and u2 are sinks) is feasible. To simulate the original protocol,
we add a substructure connecting vertices v(I) for I ∈ [n + 1]c with the vertices
corresponding to the children u1 and u2.

Let v0 be the source of G. Because v0 is feasible for x ∈ f−1(0) and y ∈ f−1(1),
one of the vertices v0(I) for I ∈ [n + 1]c is feasible for x and y in the constructed
protocol. We add a new source t labeled with an empty conjunction and a sub-
structure connecting t with the vertices v0(I) for I ∈ [n + 1]c.

Before precisely describing the substructures, we explain the high-level idea.
To this end, consider a non-sink vertex v ∈ V with two non-sink children u1 and
u2. To connect v(I) with u1(I ′) and u2(I ′′) for I ′, I ′′ ∈ [n + 1]c, we will be adding
vertices of the form v(I, G1) and v(I, (j, a, b), G2). Each vertex v(I, G1) is labeled
with ΦI

v∧ΨG1
u1 . Each vertex v(I, (j, a, b), G2) is labeled with ΦI

v∧φj,(a,b)
u1 ∧ΨG2

u2 . If the
vertex v(I, G1) is feasible, it means that v is feasible in the original protocol and
we test whether u1 is also feasible. The value G1 encodes a partial information
about the inequalities rj,0

u1 (x) < rj,1
u1 (y) for j ∈ [c]. Traversing the graph via

feasible vertices corresponds to extending the partial information G1, inequality
by inequality and each inequality bit by bit. Either we find out that all inequalities
of u1 are true and thus find I ′ ∈ [n+1]c such that u1(I ′) is feasible, or at least one
of the inequalities of u1 is false. In the case when at least one of the inequalities of

18

u1 is false, in particular φj,(a,b)
u1 holds for (a, b) ∈ [n+1]×{>} or (a, b) = (n+1, =),

we move to a vertex v(I, (j, a, b), G2) for G2 = ((0, =)). In general, if the vertex
v(I, (j, a, b), G2) is feasible, then the vertex v is feasible in the original protocol,
but the vertex u1 is not feasible because the j-th inequality does not hold. Then
the vertex u2 is feasible in the original protocol and hence there is an I ′′ such that
u2(I ′′) is feasible. We extend the partial information G2, inequality by inequality,
bit by bit until we find such I ′′.

We describe the substructure for a non-sink vertex v ∈ V . If v has two sink
children ℓ1 and ℓ2, the substructure is trivial: For each I ∈ [n + 1]c, we attach
ℓ1 and ℓ2 as children to v(I). Let us assume that v has two non-sink children u1
and u2.

We denote G1 = (g1
1, . . . , g1

c1) and G2 = (g2
1, . . . , g2

c2).
We say for u1 that:

The j-th inequality is
{

confirmed if g1
j ∈ [n + 1] × {<};

active if g1
j ∈ [n]0 × {=} ∪ [n + 1] × {̸=}.

Similarly for u2, the j-th inequality is
{

confirmed if g2
j ∈ [n + 1] × {<};

active if g2
j ∈ [n]0 × {=}.

For each I ∈ [n + 1]c, we add into V ′ all vertices v(I, G1) such that c1 ∈ [c],
the first c1 − 1 inequalities of u1 are confirmed and the c1-th inequality is active.
Furthermore, we add into V ′ all vertices v(I, (j, a, b), G2) such that j ∈ [c], (a, b) ∈
[n + 1] × {>} or (a, b) = (n + 1, =), c2 ∈ [c], the first c2 − 1 inequalities of u2 are
confirmed and the c2-th inequality is active. We use v(I, ((0, =))) as an alternative
name for v(I). (It is consistent to do that as for G1 = ((0, =)) the formula ΨG1

u1

is just an empty conjunction.) We also denote gk
j = (ak

j , bk
j) for k ∈ {1, 2} and

j ∈ [ck].
We describe the children of the vertices:

Case 1 Vertex v(I, G1). We are testing the child u1.

Case 1.1 b1
c1 = ‘=’ The first child of v(I, G1) is

v(I, (g1
1, . . . , g1

c1−1, (a1
c1 + 1, ̸=))).

If a1
c1 < n, the second child of v(I, G1) is

v(I, (g1
1, . . . , g1

c1−1, (a1
c1 + 1, =))).

If a1
c1 = n, the second child of v(I, G1) is

v(I, (c1, n + 1, =), ((0, =))).

Case 1.2 b1
c1 = ‘̸=’ The first child of v(I, G1) is

v(I, (c1, a1
c1 , >), ((0, =))).

If c1 < c, the second child of v(I, G1) is

v(I, (g1
1, . . . , g1

c1−1, (a1
c1 , <), (0, =))).

If c1 = c, the second child of v(I, G1) is

u1((a1
1, . . . , a1

c)).

19

(0;=)

(1;=)(1; 6=)

(1; <) (1; >) (2;=)

(2; <) (2; >)

(2; 6=)

Figure 3.3: Case 1 in the proof of Lemma 9

Case 2 Vertex v(I, (j, a, b), G2). We know that the child u1 is not feasible and
we are extending G2 to find I ′′ ∈ [n + 1]c such that u2(I ′′) is feasible. It
holds by definition that bc2 = ‘=’.

Case 2.1 c2 < c The first child of v(I, (j, a, b), G2) is

v(I, (j, a, b), (g2
1, . . . , g2

c2−1, (a2
c2 + 1, <), (0, =))).

If a2
c2 < n − 1, the second child of v(I, (j, a, b), G2) is

v(I, (j, a, b), (g2
1, . . . , g2

c2−1, (a2
c2 + 1, =))).

If a2
c2 = n − 1, the second child of v(I, (j, a, b), G2) is

v(I, (j, a, b), (g2
1, . . . , g2

c2−1, (n + 1, <), (0, =))).

Case 2.2 c2 = c The first child of v(I, (j, a, b), G2) is

u2((a2
1, . . . , a2

c)).

If a2
c < n − 1, the second child of v(I, (j, a, b), G2) is

v(I, (j, a, b), (g2
1, . . . , g2

c−1, (a2
c + 1, =))).

If a2
c = n − 1, the second child of v(I, (j, a, b), G2) is

u2((a2
1, . . . , a2

c−1, n + 1)).

Fig. 3.3 shows Case 1 for one inequality and n = 1; Fig. 3.4 shows Case 2 for
one inequality.

We describe the substructure connecting the new source t with the vertices
v0(I) for I ∈ [n + 1]c. The substructure is almost identical to Case 2. We will be
adding vertices of the form t(g1, . . . , gc′) labeled with Ψ(g1,...,gc′)

v0 . As in Case 2, we
say that:

The j-th inequality of v0 is
{

confirmed if gj ∈ [n + 1] × {<};
active if gj ∈ [n]0 × {=}.

We use t((0, =)) as an alternative name for the vertex t (it is consistent to
do that as Ψ((0,=))

v0 is an empty conjunction). We denote (aj, bj) = gj for j ∈ [c′].
We add all vertices t(g1, . . . , gc′) such that c′ ∈ [c], the first c′ − 1 inequalities are
confirmed and the c′-th inequality is active.

We describe the children. For the active inequality, it holds bj = ‘=’.

20

(0;=)

(2; <)

(1;=)

(n− 1;=)

(n;=) (n+ 1;=)

(1; <)

Figure 3.4: Case 2 in the proof of Lemma 9

Case 0.1 c′ < c The active inequality is not the last one. The first child of the
vertex t(g1, . . . , gc′) is

t(g1, . . . , gc′−1, (ac′ + 1, <), (0, =)).

If ac′ < n − 1, the second child of t(g1, . . . , gc′) is

t(g1, . . . , gc′−1, (ac′ + 1, =)).

If ac′ = n − 1, the second child of t(g1, . . . , gc′) is

t(g1, . . . , gc′−1, (n + 1, <), (0, =)).

Case 0.2 c′ = c The active inequality is the last one. The first child of the vertex
t(g1, . . . , gc) is

v0((a1, . . . , ac−1, ac + 1)).
If ac < n − 1, the second child of t(g1, . . . , gc) is

t(g1, . . . , gc−1, (ac + 1, =)).

If ac = n − 1, the second child of t(g1, . . . , gc) is

v0((a1, . . . , ac−1, n + 1)).

The description of the protocol P ′ is complete. We verify that it is a valid
protocol and that it solves the function f .

Each vertex has by definition out-degree 2. The substructure for the source
is acyclic and has one source t and sinks v0(I) for I ∈ [n + 1]c. The substructure
for a non-sink vertex v ∈ V with two non-sink children u1 and u2 is also acyclic;
it has sources v(I) for I ∈ [n+1]c and sinks u1(I ′) and u2(I ′′) for I ′, I ′′ ∈ [n+1]c.
The substructure for a non-sink vertex v ∈ V with two sink children ℓ1 and ℓ2 is
acyclic, has sources v(I) for I ∈ [n + 1]c and sinks ℓ1 and ℓ2. Therefore the whole
protocol is acyclic and has one source t and its sinks are the vertices corresponding
to the sinks in the original protocol. Hence the protocol satisfies the conditions
(i) and (ii) of Definition 1.

The condition (a) is also satisfied as the source t is labeled with an empty
conjunction. It remains to verify the condition (b). The verification is based on
the following implications.

21

For every non-sink vertex v ∈ V , j ∈ [c], i ∈ [n]0, we have

φj,(i,=)
v →

(
φj,(i+1,=)

v ∨ φj,(i+1,̸=)
v

)
. (3.2)

For every non-sink vertex v ∈ V , j ∈ [c], i ∈ [n + 1], we have

φj,(i, ̸=)
v →

(
φj,(i,<)

v ∨ φj,(i,>)
v

)
. (3.3)

For every non-sink vertex v ∈ V , j ∈ [c], i ∈ [n − 2]0, assuming v is feasible
in the original protocol for x ∈ f−1(0), y ∈ f−1(1), we have

φj,(i,=)
v →

(
φj,(i+1,<)

v ∨ φj,(i+1,=)
v

)
. (3.4)

If v is feasible, then the inequality rj,0
v (x) < rj,1

v (y) is true. The implication (3.4)
follows.

For every non-sink vertex v ∈ V , j ∈ [c], assuming again v is feasible in the
original protocol for x ∈ f−1(0), y ∈ f−1(1), we have

φj,(n−1,=)
v →

(
φj,(n,<)

v ∨ φj,(n+1,<)
v

)
. (3.5)

Because the inequality rj,0
v (x) < rj,1

v (y) is true, the formula φj,(n+1,=)
v cannot be

true. The implication (3.5) follows.
The general principle we implicitly use in the verification is that if for any

formulas α0, α1, α2 it holds
α0 → (α1 ∨ α2),

then it also holds
β ∧ α0 → ((γ ∧ α1) ∨ (δ ∧ α2)),

where
β ≡

⋀
ξ∈S

ξ γ ≡
⋀

ξ∈S′
ξ δ ≡

⋀
ξ∈S′′

ξ

for some sets of equalities S, S ′, S ′′ satisfying S ′ ⊆ S and S ′′ ⊆ S.
We verify the condition for vertices added in the above cases:

Case 0 The vertex t(g1, . . . , gc′) is feasible. The vertex v0 is feasible. If it holds
ac′ < n − 1, the feasibility of one of the children (in both Case 0.1 and
Case 0.2) follows from (3.4). If ac′ = n − 1, the feasibility of one of the
children follows from (3.5).

Case 1 The vertex v(I, G1) is feasible.

Case 1.1 b1
c1 = ‘=’ The feasibility of one of the children follows from (3.2)

for u1.
Case 1.2 b1

c1 = ‘̸=’ The feasibility of one of the children follows from (3.3)
for u1.

Case 2 The vertex v(I, (j, a, b), G2) is feasible. The formula ΦI
v implies that v is

feasible in the original protocol. The formula φj,(a,b)
u1 implies that u1 is not

feasible. Therefore u2 is feasible. If a2
c2 < n − 1, the feasibility of one of

the children (in both Case 2.1 and Case 2.2) follows from (3.4) for u2. If
a2

c2 = n − 1, the feasibility of one of the children follows from (3.5) for u2.

22

Finally, we estimate the size of the protocol. For each sink ℓ ∈ V , we add just
one vertex to V ′. For each non-sink vertex v ∈ V , we add vertices of the form
v(I, G1) and v(I, (j, a, b), G2). There are (n+1)c choices for I. There are at most

c∑
c1=1

((n + 1)c1−1 · 2(n + 1)) = 2(n + 1)((n + 1)c − 1)
n

= O((n + 1)c)

choices for G1 because g1
1, . . . , g1

c1−1 ∈ [n+1]×{<}, g1
c1 ∈ [n]0×{=}∪[n+1]×{̸=}.

There are c(n + 2) choices for (j, a, b) because j ∈ [c] and (a, b) ∈ [n + 1] × {>}
or (a, b) = (n + 1, =). There are

c∑
c2=1

((n + 1)c2−1 · n) = (n + 1)c − 1

choices for G2 because g2
1, . . . , g2

c2−1 ∈ [n + 1] × {<}, g2
c2 ∈ [n − 1]0 × {=}. Finally,

we add at most
c∑

c′=1
((n + 1)c′−1 · n) = (n + 1)c − 1

vertices of the form t(g1, . . . , gc′) because g1, . . . , gc′−1 ∈ [n + 1] × {<} and gc′ ∈
[n − 1]0.

After the initial transformations, it holds that |V | ≤ 2s. The total number of
vertices in V ′ is then at most

2s(n + 1)c (O((n + 1)c) + c(n + 2)((n + 1)c − 1)) + (n + 1)c − 1.

The size of the protocol is therefore O(sc(n + 1)2c+1).

23

Conclusion
We proved several relations between different types of protocols. From our per-
spective, the most important corollaries of our theorems are: (1) protocols of
degree 2 with equality are at least as strong as protocols of degree 2 with inequal-
ity; (2) protocols of degree 2 with equality have the same strength as protocols
of degree 2 with a conjunction of two inequalities. Furthermore, we defined pro-
tocols with disjointness and proved that they are at least as strong as protocols
with equality.

There are exponential lower bounds for protocols with inequality. The key
question is whether the possibly stronger protocols considered in this thesis may
be applied to obtain lower bounds in proof complexity. To answer this question,
it is necessary to find out whether lower bounds for protocols with equality, or
even for protocols with disjointness, are possible.

24

Bibliography
[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity

of boolean functions. Combinatorica, 7(1):1–22, 1987.

[Ajt83] Miklós Ajtai. Σ1
1-formulae on finite structures. Annals of Pure and

Applied Logic, 24(1):1 – 48, 1983.

[Ajt94] Miklós Ajtai. The complexity of the pigeonhole principle. Combina-
torica, 14(4):417–433, 1994.

[CR79] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of
propositional proof systems. The Journal of Symbolic Logic, 44(1):36–
50, 1979.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits,
and the polynomial-time hierarchy. Mathematical Systems Theory,
17(1):13–27, 1984.

[GGKS18] Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Mono-
tone circuit lower bounds from resolution. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018, Los Angeles, CA, USA, June 25-29, 2018, pages 902–911. ACM,
2018.

[Hak85] Armin Haken. The intractability of resolution. Theoretical Computer
Science, 39:297–308, 1985.

[HP18] Pavel Hrubeš and Pavel Pudlák. A note on monotone real circuits.
Information Processing Letters, 131:15–19, 2018.

[IS14] Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by
linear combinations. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger,
and Zoltán Ésik, editors, Mathematical Foundations of Computer Sci-
ence 2014 - 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of
Lecture Notes in Computer Science, pages 372–383. Springer, 2014.

[Juk12] Stasys Jukna. Boolean Function Complexity - Advances and Frontiers,
volume 27 of Algorithms and combinatorics. Springer, 2012.

[KN97] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cam-
bridge University Press, 1997.

[Kra94] Jan Kraj́ıček. Lower bounds to the size of constant-depth proposi-
tional proofs. The Journal of Symbolic Logic, 59(1):73–86, 1994.

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof systems,
and independence results for bounded arithmetic. The Journal of
Symbolic Logic, 62(2):457–486, 1997.

25

[Kra98] Jan Kraj́ıček. Interpolation by a game. Mathematical Logic Quarterly,
44:450–458, 1998.

[Kra16] Jan Kraj́ıček. Randomized feasible interpolation and monotone cir-
cuits with a local oracle. CoRR, abs/1611.08680, 2016.

[Kra18] Jan Kraj́ıček. Proof complexity. Cambridge University Press, 2018.
In preparation.

[KW88] Mauricio Karchmer and Avi Wigderson. Monotone circuits for con-
nectivity require super-logarithmic depth. In Janos Simon, editor,
Proceedings of the 20th Annual ACM Symposium on Theory of Com-
puting, May 2-4, 1988, Chicago, Illinois, USA, pages 539–550. ACM,
1988.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane
proofs and monotone computations. The Journal of Symbolic Logic,
62(3):981–998, 1997.

[Pud00] Pavel Pudlák. Proofs as games. The American Mathematical Monthly,
107(6):541–550, 2000.

[Pud10] Pavel Pudlák. On extracting computations from propositional proofs
(a survey). In Kamal Lodaya and Meena Mahajan, editors, IARCS
Annual Conference on Foundations of Software Technology and The-
oretical Computer Science, FSTTCS 2010, December 15-18, 2010,
Chennai, India, volume 8 of LIPIcs, pages 30–41. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2010.

[Pud13] Pavel Pudlák. Logical Foundations of Mathematics and Computa-
tional Complexity - A Gentle Introduction. Springer monographs in
mathematics. Springer, 2013.

[Raz85] Alexander A. Razborov. Lower bounds on the monotone complexity of
some Boolean functions. Doklady Akademii Nauk SSSR, 285:798–801,
1985.

[Raz95] Alexander A. Razborov. Unprovability of lower bounds on circuit size
in certain fragments of bounded arithmetic. Izv. Ross. Akad. Nauk
Ser. Mat., 59(1):201–224, 1995.

[Ros97] Arnold Rosenbloom. Monotone real circuits are more powerful than
monotone boolean circuits. Information Processing Letters, 61(3):161–
164, 1997.

[San12] Rahul Santhanam. Ironic complicity: Satisfiability algorithms and
circuit lower bounds. Bulletin of the EATCS, 106:31–52, 2012.

[Sha49] Claude E. Shannon. The synthesis of two-terminal switching circuits.
Bell Systems Technical Journal, 28:59–98, 1949.

26

[Sok17] Dmitry Sokolov. Dag-like communication and its applications. In Pas-
cal Weil, editor, Computer Science - Theory and Applications - 12th
International Computer Science Symposium in Russia, CSR 2017,
Kazan, Russia, June 8-12, 2017, Proceedings, volume 10304 of Lecture
Notes in Computer Science, pages 294–307. Springer, 2017.

[Wil14] Ryan Williams. Nonuniform ACC circuit lower bounds. Journal of
the ACM, 61(1):2:1–2:32, 2014.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distribu-
tive computing (preliminary report). In Michael J. Fischer, Richard A.
DeMillo, Nancy A. Lynch, Walter A. Burkhard, and Alfred V. Aho,
editors, Proceedings of the 11h Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages
209–213. ACM, 1979.

27

	Introduction
	Preliminaries
	Protocols
	General protocols
	Protocols with inequality and equality
	Main theorems and discussion
	Protocols with (non-)disjointness

	Simulations
	Degree reduction
	Protocols with a conjunction of inequalities

	Conclusion
	Bibliography

