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Abstract

In this paper, we study a nonlinear fluid-structure interaction problem between a viscoelastic
beam and a compressible viscous fluid. The beam is immersed in the fluid which fills a two-
dimensional rectangular domain with periodic boundary conditions. Under the effect of periodic
forces acting on the beam and the fluid, at least one time-periodic weak solution is constructed
which has a bounded energy and a fixed prescribed mass.
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1 The model

Let L,H, T > 0 and define
Γ := (0, L), Ω = (0, L)× (−H,H).

We denote the horizontal variable by x and the vertical variable by z. The fluid fills the domain Ω and
it is described with velocity u : (0, T ) × Ω → R2 and density ρ : (0, T ) × Ω → R which are periodic in
both the x and the z direction. The beam is immersed in the fluid and its vertical displacement is given
as η : (0, T )× Γ→ R, while its graph is denoted as

Γη(t) := {(x, η(t, x)) : x ∈ Γ}.

In order to work on a fixed domain Ω (note that η does not necessarily have values in [−H,H]), let us
define a z-periodic version of η

η̂(t, x) := η(t, x)− 2n(t, x)H,

where n(t, x) ∈ Z is uniquely determined by the requirement η(t, x) − 2n(t, x)H ∈ [−H,H). Its graph
Γ̂η(t) is on Figure 1. The time-space cylinders corresponding to our problem will be denoted as

QT := (0, T )× Ω, ΓT := (0, T )× Γ.

The governing equations for our coupled fluid-structure interaction problem read as follows:

The viscoelastic beam equation on ΓT :

ηtt + ηxxxx − ηtxx = −Sηffl · e2 + f. (1)

Here f denotes a given external time-periodic force acting on the viscoelastic beam and ffl is the force
with which the fluid acts on the beam. Moreover, Sη =

√
1 + |ηx|2 is the Jacobian of the transformation

from Eulerian to Lagrangian coordinates of the beam (i.e. from Γη to Γ).
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Figure 1: Two examples of the beam inside the fluid. On the top, the structure is completely contained in Ω so
Γη(t) = Γ̂η(t). On the bottom, the structure leaves Ω and re-enters from the other side so Γη(t) 6= Γ̂η(t) (the dashed part
represents Γη(t) \ Γ̂η(t)).

The compressible Navier-Stokes equations on
⋃
t∈(0,T ){t} ×

(
Ω \ Γ̂η(t)

)
:

∂t(ρu) +∇ · (ρu⊗ u) = −∇p(ρ) +∇ · S(∇u) + ρF,

∂tρ+∇ · (ρu) = 0,
(2)

where we set the pressure p for simplicity to be

p(ρ) = ργ ,

the viscous stress tensor S is given by the Newton rheological law

S(∇u) := µ
(
∇u +∇τu−∇ · uI

)
+ ζ∇ · uI, µ, ζ > 0,

and F is a given time-periodic force acting onto the fluid.

The fluid-structure coupling (kinematic and dynamic, resp.) on ΓT :

ηt(t, x)e2 = u(t, x, η̂(t, x)), (3)

ffl(t, x) =
[[

(−p(ρ)I + S(∇u))
]]

(t, x, η̂(t, x)) νη(t, x), (4)

where νη = (−ηx,1)√
1+|ηx|2

denotes the normal vector on Γη facing upwards and

[[A]](·, z) := lim
ε→0+

(
A(·, z − ε)−A(·, z + ε)

)
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represents the jump of quantity A in the vertical direction.

The beam boundary conditions:

η is periodic in x and η(t, x) = 0, (t, x) ∈ (0, T )× {0, L}. (5)

Fluid spatial periodicity:

ρ,u are periodic in x and z directions. (6)

Time periodicity:
ρ,u, η are periodic in time. (7)

2 Weak solution and main result

The nature of the studied problem enables us to work with two equivalent formulations of the problem.
In the original formulation, the domain Ω is fixed and the viscoelastic beam appears inside the domain
Ω. However, we may use the z−periodicity of the problem to formulate it on the moving domain Ωη(t)
filled with the fluid, where the top and the bottom of the domain is given by the viscoelastic beam. For
a given η(t, x) we introduce an equivalent fluid domain and the corresponding time-space cylinder

Ωη(t) := {(x, z) : x ∈ (0, L), η(t, x) < z < η(t, x) + 2H}, QηT :=
⋃

t∈(0,T )

{t} × Ωη(t), (8)

both domains are demostrated in Figure 2.

Figure 2: Ωη(t) on the left and Ω on the right.

For a set1 S = (a1, a1 +L1)× · · · × (an, an +Ln) where L1, ..., Ln > 0 and n ∈ {1, 2, 3}, we introduce
the spaces of differentiable periodic functions for k ∈ N0 ∪ {∞}

Ck#(S) := {f ∈ Ck(Rn) : f(x1, . . . , xn) = f(x1 + L1, . . . , xn) = ... = f(x1, . . . , xn + Ln)

for all (x1, . . . , xn) ∈ Rn}.

We define Lebesgue and Sobolev function spaces for any p, q ∈ [1,∞], k ∈ N0 ∪ {∞} as closures in the
respective norms

W k,p
# (S) := C∞# (S)

‖·‖
Wk,p(S) .

1Here, S will represents either one of the sets (0, T ), Γ, Ω or some of their products.
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In order to accommodate the boundary conditions (5) we further introduce the spaces

Ck#,0(Γ) := {ϕ ∈ Ck#(Γ) : ϕ(0) = 0},

Ck#,0(ΓT ) := {ϕ ∈ Ck#(ΓT ) : ϕ(t, 0) = 0 for all t ∈ R},

for k ∈ N0 ∪ {∞}, and the corresponding closure

W k,p
#,0(Γ) := C∞#,0(Γ)

‖·‖
Wk,p(Γ) .

Finally, we define

Lp#(0, T ;W 1,q
# (Ω)) := {f ∈ Lp#(0, T ;Lq#(Ω)) : ∇f ∈ Lp#(0, T ;Lq#(Ω))},

W 1,p
# (0, T ;Lq#(Γ)) := {f ∈ Lp#(0, T ;Lq#(Γ)) : ∂tf ∈ Lp#(0, T ;Lq#(Γ))}.

As usual, Hk denotes Sobolev spaces W k,2. For a function f ∈ C1
#(Ω) and η ∈ C1

#,0(Γ), we can define
the Lagrangian trace on Γ̂η as

γ|Γ̂ηf(x) := f(x, η̂(x))

and then extend it to a linear and continuous operator γ|Γ̂η : H1
#(Ω) → H

1
2
#(Γ). Here H 1

2 denotes the
Sobolev-Slobodetskii space. Finally, we will denote the two-dimensional space variable y = (x, z).

Definition 2.1 (Weak solution). We say that ρ ∈ L∞# (0, T ;Lγ#(Ω)), u ∈ L2
#(0, T ;H1

#(Ω)) and η ∈
W 1,∞

# (0, T ;L2
#(Γ)) ∩ L∞# (0, T ;H2

#(Γ)) ∩H1
#(0, T ;H1

#,0(Ω)) is a weak solution to (1)-(7) if:

1. The kinematic coupling γ|Γ̂ηu = ηte2 holds on ΓT .

2. The renormalized continuity equation∫
QT

ρB(ρ)(∂tϕ+ u · ∇ϕ) dydt =
∫
QT

b(ρ)(∇ · u)ϕdydt (9)

holds for all functions ϕ ∈ C∞# (QT ) and any b ∈ L∞(0,∞) ∩ C[0,∞) such that b(0) = 0 with
B(ρ) = B(1) +

∫ ρ
1
b(z)
z2 dz.

3. The coupled momentum equation∫
QT

ρu · ∂tϕ dydt+
∫
QT

(ρu⊗ u) : ∇ϕdydt+
∫
QT

ργ(∇ ·ϕ) dydt−
∫
QT

S(∇u) : ∇ϕdydt

+
∫

ΓT
ηtψt dxdt−

∫
ΓT
ηxxψxx dxdt−

∫
ΓT
ηtxψx dxdt = −

∫
ΓT
fψ dxdt−

∫
QT

ρF ·ϕdydt (10)

holds for all ϕ ∈ C∞# (QT ) and all ψ ∈ C∞#,0(ΓT ) such that ϕ(t, x, η̂(t, x)) = ψ(t, x)e2 on ΓT .

We note that the choice b(ρ) = 0 in (9) recovers the standard weak formulation of the continuity
equation. Our main result reads as follows.

Theorem 2.1 (Main result). Let H,L, T,m0 > 0 be given and let γ > 1. Let f ∈ L2
#(ΓT ) and

F ∈ L2
#(0, T ;L∞# (Ω)). Then, there exists at least one weak solution to (1)-(7) in the sense of Definition

2.1 such that ∫
Ω
ρ(t) dy = m0

for almost all t ∈ (0, T ) and the energy inequality

−
∫
QT

φt

(
1
2ρ|u|

2 + 1
γ − 1ρ

γ

)
dydt−

∫
ΓT
φt

(
1
2 |ηt|

2 + 1
2 |ηxx|

2
)

(t) dxdt

+
∫ T

0

∫
Ω
φS(∇u) : ∇u dydt+

∫ T

0

∫
Γ
φ|ηtx|2 dxdt

≤
∫ T

0

∫
Γ
φfηt dxdt+

∫ T

0

∫
Ω
φρu · F dydt (11)
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holds for all φ ∈ C∞# (0, T ), φ ≥ 0. Moreover,

sup
t∈(0,T )

[ ∫
Ω

(1
2ρ|u|

2 + 1
γ − 1ρ

γ
)

dy +
∫

Γ

(1
2 |ηt|

2 + 1
2 |ηxx|

2
)

dx
]
(t)

+
∫
QT

S(∇u) : ∇u dydt+
∫

ΓT
|ηtx|2 dxdt ≤ C(f,F,Ω,m0). (12)

Remark 2.1 (Strategy of the proof). The proof of this theorem is based on a four-level approximation
scheme. Following the approach from [48] (see also [33]), we decouple the coupled momentum equation to
the fluid momentum equation and the structure momentum equation by penalizing the kinematic coupling
condition (3). This allows us to deal with these equations separately. Then, we choose to span the fluid
velocity and the structure displacement in finite time-space bases, as it was done in [19] (note that this
is in contrast with the fixed-point approach which was used in [18, 37]). Finally, as it is standard in
the theory of compressible Navier-Stokes equations, artificial diffusion is added to the fluid continuity
equation and the artificial pressure is added to the fluid momentum equation. Several other terms are
also added due to technical reasons. In order to obtain a weak solution, there are four limits that are
performed, each of them being based on estimates that significantly differ from a limit to limit due to their
high sensitivity to the approximation parameters. Unlike the initial value problem, we need to additionally
ensure that the energy inequality of the form (11) is satisfied at each approximation level to obtain some
important estimates, and for this we need to prove the convergence of the structure kinetic and elastic
energies in each of the limits. This part is based on improved structure displacement estimates from [40],
adapted to our framework similarly as in [46].

Remark 2.2. Throughout the proof, we will work with formulations of the problem both on Ω and on
Ωη(t). As both the fluid velocity u and density ρ can be represented on Ωη(t) equivalently, we keep the
same notation for u and ρ whenever we shift to the domain Ωη(t). Let us point out that u is continuous
on Γ̂η(t) so ‖u‖W 1,p(Ωη(t)) = ‖u‖W 1,p(Ω) for any p ∈ [1,∞], while ρ may have a jump on Γ̂η(t) so we use
‖ρ‖Lp(Ωη(t)) = ‖ρ‖Lp(Ω) for p ∈ [1,∞] only.

3 Discussion and literature overview

The mathematical theory of the interaction problems between incompressible viscous fluids and thin
elastic structures (plates or shells) has started with results of Beirao da Veiga [6] and Grandmont et
al. [15, 21], and continued to develop in the last two decades, see [30, 40, 12, 13, 48, 24, 28] for the
existence of weak solutions, [1, 2, 23, 22, 34, 4, 24, 31, 32] for the existence of strong solutions and
[25, 43] for uniqueness. Theory involving compressible viscous fluids interacting with plates and shells
on the other started quite recently with the result of Schwarzacher and Breit [10], and continued with
[47] where weak solution was obtained for an interaction between a compressible viscous fluid and a
nonlinear thermoelastic plate. Local in time regular solutions were constructed in [39, 35], while the
weak-strong uniqueness for such problems was studied in [46]. In the case of heat-conducting fluids,
interaction with an elastic plate was considered in [11] where a weak solution was constructed which
satisfies the energy equality, and an interaction with a viscoelastic plate was considered in [36] where
the strong solution with maximal regularity was constructed. The interaction of heat-conducting fluids
and thermoelastic shells with heat exchange was studied in [33], where a weak solution was constructed.
The case of mixture with elastic structure was studied in [26]. A semigroup approach to wellposedness
of the problem of interaction of a linearized compressible fluid with an elastic boundary was presented
in [5]. Finally, local in time regular solutions to the interaction problems between 3D elastic solids and
fluids were obtained in [16, 17, 29, 41, 8], while weak solutions were constructed in [7, 9]. We also refer
the reader to a very recent result [27] where such a problem with allowed contact was studied.
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With all this in mind, little attention has been given to time-periodic solutions, or more precisely, to
the question when the fluid-structure interaction model has a periodic behaviour under periodic forcing.
Indeed, this question is of big importance, since many models tend to show periodic behavior. For
example, heart beats and air flow through trachea are both periodic. Therefore, one can naturally ask,
under what condition we can expect such models to behave periodically? This was first studied by
Casanova for an interaction problem between a viscoelastic beam and an incompressible fluid [14] in the
framework of strong solutions. Quite recently, Schwarzacher and Mîndrilǎ studied the interaction of a
linear Koiter shell with an incompressible viscous fluid and obtained existence of a weak solution with
a closed rigid boundary with no-slip condition in [37] and a dynamic pressure boundary condition in
[38]. Finally, concerning the purely fluid system, the time-periodic weak solutions to the compressible
Navier-Stokes system on a fixed domain were constructed in [18] for isentropic flows and in [19] for the
full Navier-Stokes-Fourier system.

The main goal of this paper is to tackle this issue in the case when the fluid is compressible. This brings
many challenges which do not exist in the incompressible case. The main challenge in the compressible
viscous fluid theory is dealing with pressure and our case is no different. The estimates based on Bogovskii
operator for the pressure are very sensitive to the shape of the domain (and thus on deformations of the
beam) and many other factors including dimension. This directly results in limitations in our result, i.e.
the dimension of the fluid is two, the beam is visoelastic and the fluid domain is periodic in horizontal
and vertical direction which a priori excludes contact for the beam.

The paper is organized as follows. In Section 4 we present a way to obtain a priori estimates assuming
the solution is sufficiently smooth. This procedure is split into several steps. In Section 5 we present
the approximation scheme used in the proof of Theorem 2.1 and prove the existence of a solution to the
approximated system. In Section 6 we pass to the limit in the number of time basis functions m → ∞
and present uniform estimates for the arising solution independent of n. In Section 7 we pass to the limit
in the number of spatial basis functions n→∞, deduce uniform bounds independent of ε and introduce
the coupled momentum equation. In Section 8, we perform the limit with the penalization and artificial
density diffusion parameter ε → 0 and deduce uniform bounds independent of δ. Finally, in Section 9
we pass to the limit with δ → 0, thus removing the artificial pressure term and finishing the proof of
Theorem 2.1.

4 A priori estimates for smooth solutions

Before we start, let us introduce the energy associated to the studied system as

E(t) :=
∫

Ω

(
1
2ρ|u|

2 + 1
γ − 1ρ

γ

)
(t) dy +

∫
Γ

(
1
2 |ηt|

2 + 1
2 |ηxx|

2
)

(t) dx

and we emphasize that replacing Ω with Ωη(t) yields the same quantity, see Remark 2.2. Further, we
denote

E := sup
(0,T )

E.

The goal of this section is to show that smooth solutions to the problem (1)-(7) satisfies the inequality
(12). This will serve as base in the forthcoming sections, where approximate problems with similar
properties will be studied. We note that since we assume in this section that the solution is smooth, we
are allowed to consider unbounded functions b in (9).
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4.1 Part I - estimates of ∇u and ηtx

In order to obtain the estimates, we sum up (9) with b(ρ) = ργ and ϕ = 1, (9) with b(ρ) = 0 and
ϕ = 1

2 |u|
2 and (10) with (ϕ, ψ) = (u, ηt) to obtain∫

QT

S(∇u) : ∇u dydt+
∫

ΓT
|ηtx|2 dxdt =

∫
ΓT
fηt dxdt+

∫
QT

ρu · F dydt

and thus∫
QT

S(∇u) : ∇u dydt+ c(L)‖ηt‖2L2(0,T ;H1(Γ))

≤
∫
QT

S(∇u) : ∇u dydt+
∫

ΓT
|ηtx|2 dxdt =

∫
ΓT
fηt dxdt+

∫
QT

ρu · F dydt

≤ ‖f‖L2(ΓT )‖ηt‖L2(ΓT ) + ‖ρ‖L∞(0,T ;Lp(Ω))‖u‖L2(0,T ;Lq(Ω))‖F‖L2(0,T ;L∞(Ω))

≤ C(f, L) + c(L)
2 ‖ηt‖

2
L2(0,T ;H1(Γ)) + C(F)‖ρ‖L∞(0,T ;Lp(Ω))‖u‖L2(0,T ;Lq(Ω))

for any p > 1 and q = p
p−1 by the Poincaré inequality for η. We have just deduced that∫

QT

S(∇u) : ∇u dydt+ ‖ηt‖2L2(0,T ;H1(Γ)) ≤ C + C‖ρ‖L∞(0,T ;Lp(Ω))‖u‖L2(0,T ;Lq(Ω)). (13)

From here onward, we omit the dependence of constants on Ω, f,F, since they are given and do not
depend on functions ρ,u, η.

Next, we shift to the moving domain Ωη(t) given in (8). We have

‖ηte2‖L2(0,T ;H1(Ωη(t))) = 2H‖ηt‖L2(0,T ;H1(Γ)).

Due to the kinematic coupling, we have that u− ηe2 = 0 on Γη(t) and Γη(t) + 2H, so by using the Korn
identity on Ωη(t)

‖∇u−∇(ηte2)‖2L2(Qη
T

) + ‖∇ · (u− ηte2)‖2L2(Qη
T

) = 2‖D(u− ηte2)‖2L2(Qη
T

)

≤ C‖S(∇u−∇(ηte2)‖2L2(Qη
T

) ≤ C

(∫
Qη
T

S(∇u) : ∇u dydt+ ‖ηt‖2L2(0,T ;H1(Γ))

)
,

where C only depends on µ, ζ. The Poincaré inequality yields

‖u− ηte2‖2H1(Ωη(t)) ≤ C‖∇u−∇(ηte2)‖2L2(Ωη(t)).

Note that the constant C is independent of η – this follows directly from the proof of the inequality for
the steady domain [3, Theorem 6.30]. We use

‖ηt‖L∞(Γ) ≤ C‖ηt‖H1(Γ)

and u− ηte2 = 0 on Γη(t) ∪ Γη(t) + 2H to conclude

‖u‖2L2(0,T ;Lq(Ωη(t))) ≤ 2‖u− ηte2‖2L2(0,T ;Lq(Ωη(t))) + 2‖ηte2‖2L2(0,T ;Lq(Ωη(t)))

≤ C‖u− ηte2‖2L2(0,T ;H1(Ωη(t))) + C‖ηte2‖2L2(0,T ;H1(Ωη(t)))

≤ C
∫
Qη
T

S(∇u) : ∇u dydt+ C‖ηt‖2L2(0,T ;H1(Γ)) (14)

for any 1 < q <∞. We set

κ := min
{

1
20 ,

(γ − 1)
5γ ,

1
5(γ − 1)

}
, (15)

7



and
p = p(κ) := 2γ2

2γ2 − κ(γ − 1) ,

so we have
θ := γ(p− 1)

p(γ − 1) = κ

2γ .

Then for any 1 < p < p we have for some θ < θ

‖ρ‖L∞(0,T ;Lp(Ωη(t))) ≤ ‖ρ‖1−θL∞(0,T ;L1(Ωη(t)))‖ρ‖
θ
L∞(0,T ;Lγ(Ωη(t))) ≤ Cm

1−θ
0 Eγθ ≤ C(1 + E κ2 ). (16)

Since

‖ρ‖L∞(0,T ;Lp(Ωη(t))) = ‖ρ‖L∞(0,T ;Lp(Ω)),

∫
Qη
T

S(∇u) : ∇u dydt =
∫
QT

S(∇u) : ∇u dydt,

the inequalities (13), (14) and (16) yield

‖u‖2L2(0,T ;H1(Ω)) + ‖ηt‖2L2(0,T ;H1(Γ)) ≤ C(κ)(1 + Eκ), (17)

for the original domain, and consequently

‖u‖2L2(0,T ;Lq(Ω)) ≤ C(κ, q)(1 + Eκ) (18)

for all q > 1.

4.2 Part II - circular estimates

In order to deduce the energy inequality, we sum up (9) with b(ρ) = ργ and ϕ = χ[s,t], (9) with b(ρ) = 0
and ϕ = χ[s,t]

1
2 |u|

2 and (10) with (ϕ, ψ) = (χ[s,t]u, χ[s,t]ηt) to obtain

E(t) +
∫ t

s

∫
Ω
S(∇u) : ∇u dydτ +

∫ t

s

∫
Γ
|ηtx|2 dxdτ

= E(s) +
∫ t

s

∫
Γ
fηt dxdτ +

∫ t

s

∫
Ω
ρu · F dydτ

≤ E(s) + C(κ)(1 + Eκ) ≤ E(s) + C(κ) + κE

by (16), (17), (18) and the Young inequality. We integrate again over (0, T ) with respect to variable s
and then we take a supremum in the variable t over (0, T ) on the left hand side to obtain

E ≤ C0

(
1 +

∫ T

0
E(s) ds

)
. (19)

The constant C0 depends on the choice of κ, however we recall that κ is already fixed. Our goal in the
remaining part of the estimates is to show∫ T

0
E(s) ds ≤ δ0E + C(δ0)

for some δ0 ∈ (0, 1
C0

).

4.3 Part III - estimate of ηxx

In this section we need the following interpolation inequality.

Lemma 4.1. Let g ∈ H1(0, T ;L2(Γ)) ∩ L2(0, T ;H1(Γ)). Then for any α ∈ (0, 1) it holds

g ∈ Hα(0, T ;H1−α(Γ))

and there exists a constant C > 0 independent of g such that

‖g‖Hα(0,T ;H1−α(Γ)) ≤ C‖g‖αH1(0,T ;L2(Γ))‖g‖
1−α
L2(0,T ;H1(Γ)).
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Proof. First, note that g can easily be extended to R2 (also denoted as g) so that

‖g‖H1(R;L2(R)) ≤ C‖g‖H1(0,T ;L2(Γ)), ‖g‖L2(R;H1(R)) ≤ C‖g‖L2(0,T ;H1(Γ)).

Denote as Ft, Fx and Ft,x the Fourier transform w.r.t. variables t and x and both t, x, respectively. One
has:

‖g‖2Hα(R;H1−α(R)) ≤ C

∫
R

(1 + σ2)α||Ft(g)||2H1−α(R) dσ

≤ C

∫
R

(1 + σ2)α
∫
R

(1 + ξ2)1−α|Fx(Ft(g))|2 dξdσ

= C

∫
R2

(1 + σ2)α(1 + ξ2)1−α|Ft,x(g)|2 dξdσ

≤ C

(∫
R2

(1 + σ2)|Ft,x(g)|2 dξdσ
)2α(∫

R2
(1 + ξ2)|Ft,x(g)|2 dξdσ

)2(1−α)

= C‖g‖2αH1(R;L2(R))‖g‖
2(1−α)
L2(R;H1(R)),

where we used Hölder’s inequality with indexes p = 1
α and q = 1

1−α .

We use test functions (ϕ, ψ) = (ηe2, η) in (10), we observe that ∇ · (ηe2) = 0 and∫
ΓT
ηtxηx dxdt = 1

2

∫
ΓT

(η2
x)t dxdt = 0.

Consequently,

‖ηxx‖2L2(ΓT ) =
∫

ΓT
|ηxx|2 dxdt

=
∫
QT

ρu · ηte2 dydt+
∫
QT

ρu⊗ u : ∇(ηe2) dydt−
∫
QT

S(∇u) : ∇(ηe2) dydt+
∫
QT

ρηe2 · F dydt

+
∫

ΓT
|ηt|2 dxdt+

∫
ΓT
fη dxdt. (20)

We fix 1 < p < p, denote q = p
p−1 and estimate the terms on the right hand side as follows. First,∣∣∣∣∫

QT

ρu · ηte2 dydt
∣∣∣∣ ≤ C‖ρ‖L∞(0,T ;Lp(Ω))‖u‖L2(0,T ;Lq(Ω))‖ηt‖L2(0,T ;L∞(Γ)) ≤ C(κ)

(
1 + E 3κ

2

)
by using Sobolev embedding, (16), (17) and (18). In order to estimate the convective term, we utilize
the following estimate

‖ηx‖L∞(0,T ;L3q(Γ)) ≤ C‖ηx‖H 1
2 +δ(0,T ;H

1
2−δ(Γ))

≤ C‖ηx‖
1
2 +δ
H1(0,T ;L2(Γ))‖ηx‖

1
2−δ
L2(0,T ;H1(Γ))

≤ C
(
‖ηx‖

1
2 +δ
L2(0,T ;L2(Γ)) + ‖ηtx‖

1
2 +δ
L2(0,T ;L2(Γ))

)
‖ηx‖

1
2−δ
L2(0,T ;H1(Γ))

= C‖ηx‖L2(0,T ;H1(Γ)) + C‖ηtx‖
1
2 +δ
L2(0,T ;L2(Γ))‖ηx‖

1
2−δ
L2(0,T ;H1(Γ))

≤ C
(
‖ηx‖L2(0,T ;H1(Γ)) + ‖ηtx‖L2(0,T ;L2(Γ))

)
. (21)

Here δ > 0 is sufficiently small, we have used Sobolev embedding, Lemma 4.1 and the Young inequality
for exponents ( 1

2 + δ)−1 and ( 1
2 − δ)

−1. We use this estimate to write∣∣∣∣∫
QT

ρu⊗ u : ∇(ηe2) dydt
∣∣∣∣ ≤ C‖ρ‖L∞(0,T ;Lp(Ω)‖u‖2L2(0,T ;L3q(Ω))‖ηx‖L∞(0,T ;L3q(Γ))

≤ C(κ)(1 + E 3κ
2 )
(
‖ηx‖L2(0,T ;H1(Γ)) + ‖ηtx‖L2(0,T ;L2(Γ))

)
≤ C(κ)

(
1 + E3κ)+ 1

8‖ηxx‖
2
L2(ΓT ),
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where we have used again (16), (17), (18), and the Young inequality. The viscous term is estimated by∣∣∣∣∫
QT

S(∇u) : ∇(ηe2) dydt
∣∣∣∣ ≤ C‖S(∇u)‖L2(QT )‖ηx‖L2(0,T ;L2(Γ))

≤ C‖S(∇u)‖2L2(QT ) + 1
8‖ηxx‖

2
L2(ΓT ) ≤ C(κ) (1 + Eκ) + 1

8‖ηxx‖
2
L2(ΓT )

using (17). We also use (17) directly to estimate∫
ΓT
|ηt|2 dxdt ≤ C(κ) (1 + Eκ) .

Finally,∣∣∣∣∫
QT

ρηe2 · F dydt
∣∣∣∣ ≤ C‖ρ‖L∞(0,T ;L1(Ω))‖η‖L2(0,T ;L∞(Γ))‖F‖L2(0,T ;L∞(Ω)) ≤ C + 1

8‖ηxx‖
2
L2(ΓT )

and ∣∣∣∣∫
ΓT
fη dxdt

∣∣∣∣ ≤ ‖f‖L∞(ΓT )‖η‖L1(ΓT ) ≤ C + 1
8‖ηxx‖

2
L2(ΓT )

by using the Poincaré inequality twice together with the boundary condition (5). All the estimates
together with (20) yield ∫

ΓT
|ηxx|2 dxdt ≤ C(κ)(1 + E3κ). (22)

4.4 Part IV - density/pressure estimates

Denote the Bogovskii operator as BΩ : Lp0(Ω)→W 1,p
0 (Ω). This operator satisfies

∇ · BΩ[f ] = f,

where Lp0(Ω) := {f ∈ Lp(Ω) :
∫

Ω f = 0} and W 1,p
0 (Ω) := {f ∈W 1,p(Ω) : f�∂Ω = 0}. Moreover,

‖BΩ[f ]‖W 1,p(Ω) ≤ C‖f‖Lp(Ω).

Throughout the rest of this section, we will repeatedly use the following estimate. For 0 < α < 1
2 , we

have ∥∥∥∥BΩ

[
ρα −

∫
Ω
ρα dy

]∥∥∥∥
L∞(Ω)

≤ C
∥∥∥∥BΩ

[
ρα −

∫
Ω
ρα dy

]∥∥∥∥
W 1, 1

α (Ω)
≤ C‖ρα‖

L
1
α (Ω)

= Cmα
0 . (23)

We cannot use BΩ[ρα −
∫

Ω ρ
α] as a test function ϕ in (10) since its trace on Γη is not regular enough in

general. Therefore, we split the procedure into estimates near the viscoelastic structure and estimates
in the interior of the fluid domain. To this end we fix 0 < h < H

2 and we emphasize that constants
appearing in the calculations below may depend on h.

We shift to the moving domain Ωη(t) and we deal with the interior estimates first. Note that the
function BΩ

[
ρα −

∫
Ω ρ

α dy
]
shifted to Ωη(t) does not vanish on its boundary Γη(t) and Γη(t) + 2H. For

that reason, we define a cut-off function

φh(t, x, z) :=


z−η(t,x)

h , for η(t, x) < z < η(t, x) + h,

1, for η(t, x) + h < z < η(t, x) + 2H − h,
2H+η(t,x)−z

h , for η(t, x) + 2H − h < z < η(t, x) + 2H,

and
ϕh := φhBΩ

[
ρα −

∫
Ω
ρα dy

]
, (24)
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where
0 < α := min

{
2
5 ,
γ − 1

2

}
is fixed from now on. We emphasize that this choice of α ensures α < 1

2 , so we can use the estimate
(23). Moreover due to (15) it holds

3
2κ(γ − 1) < α < γ − 1− κγ, (25)

which will be important later.
We test the coupled momentum equation (10) by (ϕh, 0) to obtain

∫
Qη
T

ργ+αφh dydt =
∫
Qη
T

ργ

(∫
Ωη(t)

ρα(t) dy
)
φh dydt

−
∫
Qη
T

ργ
(
BΩ

[
ρα −

∫
Ω
ρα dy

]
· ∇φh

)
dydt−

∫
Qη
T

ρu · ∂tϕh dydt

−
∫
Qη
T

ρu⊗ u : ∇ϕh dydt+
∫
Qη
T

S(∇u) : ∇ϕh dydt−
∫
Qη
T

ρF ·ϕh dydt. (26)

We proceed to bound the terms on the right-hand side. Notice that∫
Ωη(t)

ρα(t) dy ≤
(∫

Ωη(t)
ρ(t) dy

)α
|Ωη(t)|1−α ≤ Cmα

0

and therefore ∫
Qη
T

ργ

(∫
Ωη(t)

ρα(t) dy
)
φh dydt ≤ CEmα

0 . (27)

Moreover,∣∣∣∣∣
∫
Qη
T

ργBΩ

[
ρα −

∫
Ω
ρα dy

]
· ∇φh

∣∣∣∣∣ dydt

≤ C
∫ T

0
‖ργ‖L1(Ωη(t))

∥∥∥∥BΩ

[
ρα −

∫
Ω
ρα dx

]∥∥∥∥
L∞(Ω)

(1 + ‖ηx‖L∞(Γ)) dt

≤ C‖ργ‖L∞(0,T ;L1(Ωη(t)))m
α
(
1 + ‖η‖L2(0,T ;H2(Γ))

)
≤ C(κ)

(
E1+ 3κ

2

)
. (28)

In order to estimate the third term on the right hand side of (26), we fix 1 < p < p and q > 1 such
that 1

γ + 1
q + 1

p = 1. Since the Bogovskii operator commutes with the derivative with respect to time,
we deduce

∂tϕh = φh∂tBΩ

[
ρα −

∫
Ωη(t)

ρα dy
]

+ ∂tφhBΩ

[
ρα −

∫
Ωη(t)

ρα dy
]

= φhBΩ

[
∂t

(
ρα −

∫
Ωη(t)

ρα dy
)]

+ ∂tφhBΩ

[
ρα −

∫
Ωη(t)

ρα dy
]
.

The continuity equation implies

∂tρ
α = −∇ · (ραu) + (1− α)ρα∇ · u

11



which is used to estimate∥∥∥∥∥BΩ

[
∂tρ

α − ∂t
∫

Ωη(t)
ρα dy

]∥∥∥∥∥
L2(0,T ;Lp(Ωη(t)))

=

∥∥∥∥∥BΩ

[
∇ · (ραu) + (α− 1)ρα∇ · u− (α− 1)

(∫
Ωη(t)

ρα∇ · u dy
)]∥∥∥∥∥

L2(0,T ;Lp(Ωη(t)))

≤ ‖ραu‖L2(0,T ;Lp(Ωη(t))) + C‖BΩ[ρα∇ · u]‖L2(0,T ;Lp(Ωη(t)))

≤ ‖ραu‖L2(0,T ;Lp(Ωη(t))) + C‖ρα∇ · u‖L2(0,T ;Lr(Ωη(t)))

≤ ‖ρα‖
L∞(0,T ;L

γ
α (Ωη(t)))

‖u‖
L2(0,T ;L

pγ
γ−αp (Ωη(t)))

+ C‖ρα‖
L∞(0,T ;L

γ
α (Ωη(t)))

‖∇ · u‖L2(Qη
T

)

≤ C(κ)
(

1 + E
α
γ +κ

2

)
,

where r = max{1, 2p
2+p}. Since

∂tφh = − 1
h
ηt

on the set where it is not zero, it holds that∣∣∣∣∣
∫
Qη
T

ρu · ∂tϕh dydt

∣∣∣∣∣ ≤ ‖ρ‖L∞(0,T ;Lγ(Ωη(t)))‖u‖L2(0,T ;Lq(Ωη(t)))‖∂tϕh‖L2(0,T ;Lp(Ωη(t)))

≤ C(κ)
(

1 + E
1
γ+κ

2

)(
‖φh‖L∞(Qη

T
)E

α
γ +κ

2 + ‖ηt‖L2(0,T ;Lp(Γ))m
α
0

)
≤ C(κ)

(
1 + E

1
γ+α

γ +κ
)
. (29)

We continue with the fourth term on the right hand side of (26). Here we take q = 2γ
γ−1−α and deduce∣∣∣∣∣

∫
Qη
T

ρu⊗ u : ∇ϕh dydt

∣∣∣∣∣ ≤ ‖ρ‖L∞(0,T ;Lγ(Ωη(t)))‖u‖2L2(0,T ;Lq(Ωη(t)))‖∇ϕh‖L∞(0,T ;L
γ
α (Ωη(t)))

≤ C(κ)E
1
γ+κ

(∥∥∥∥∇BΩ

[
ρα −

∫
Ω
ρα dy

]∥∥∥∥
L∞(0,T ;L

γ
α (Ωη(t)))

+ ‖∇φh‖L∞(0,T ;L
γ
α (Ωη(t)))

mα
0

)
≤ C(κ)

(
1 + E

1
γ+κ)

(
‖ρα‖

L∞(0,T ;L
γ
α (Ωη(t)))

+ 1 + ‖ηx‖L∞(0,T ;L
γ
α (Γ))

)
≤ C(κ)(1 + E

1
γ+κ)

(
‖ρα‖

L∞(0,T ;L
γ
α (Ωη(t)))

+ 1 + ‖ηx‖L2(0,T ;H1(Γ)) + ‖ηtx‖L2(0,T ;L2(Γ))

)
≤ C(κ)(1 + E

1
γ+κ)

(
1 + E

α
γ + E 3κ

2

)
≤ C(κ)

(
1 + E

1+α
γ +κ + E

1
γ+ 5κ

2

)
by (21) and (22). The elliptic term satisfies∣∣∣∣∣
∫
Qη
T

S(∇u) : ∇ϕh dydt

∣∣∣∣∣ ≤ ‖S(∇u)‖L2(0,T ;L2(Ωη(t)))‖∇ϕh‖L2(0,T ;L
γ
α (Ωη(t)))

≤ C(κ)
(
1 + E κ2

)(∥∥∥∥∇BΩ

[
ρα −

∫
Ω
ρα dy

]∥∥∥∥
L2(0,T ;L

γ
α (Ωη(t)))

+ ‖∇φh‖L2(0,T ;L
γ
α (Ωη(t)))

mα
0

)
≤ C(κ)

(
1 + E κ2

) (
‖ρα‖

L∞(0,T ;L
γ
α (Ωη(t)))

+ (1 + ‖ηx‖L2(0,T ;L
γ
α (Γ))

)
)

≤ C(κ)
(
1 + E κ2

) (
1 + ‖ρα‖

L∞(0,T ;L
γ
α (Ωη(t)))

+ ‖ηxx‖L2(0,T ;L2(Γ))

)
≤ C(κ)(1 + E

α
γ +κ

2 + E2κ).

Finally,∣∣∣∣∣
∫
Qη
T

ρF ·ϕh dydt

∣∣∣∣∣ ≤ C‖ρ‖L∞(0,T ;L1(Ωη(t)))‖F‖L2(0,T ;L∞(Ωη(t)))‖ϕh‖L∞(Qη
T

) ≤ Cm1+α
0 ≤ C.

We observe that due to (15) and (25) the largest power of E in all of the above estimates is E1+ 3κ
2 .

We combine these estimates to get∫ T

0

∫
{η+h<z<η+2H−h}

ργ+α dydt ≤
∫
Qη
T

ργ+αφh dydt ≤ C(κ)
(

1 + E1+ 3κ
2

)
, (30)
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which then gives us by the interpolation of Lebesgue spaces

(∫ T

0

∫
{η+h<z<η+2H−h}

ργ dydt
) 1
γ

≤

(∫ T

0

∫
{η+h<z<η+2H−h}

ργ+α dydt
) θ
γ+α

(∫ T

0

∫
{η+h<z<η+2H−h}

ρdydt
)1−θ

≤ C(κ)(1 + E1+ 3κ
2 )

θ
γ+αm1−θ

0 ,

where
θ = (γ − 1)(γ + α)

(γ + α− 1)γ .

The choice of κ and α which satisfy (15) and (25) ensures that(
1 + 3κ

2

)
γθ

γ + α
=
(

1 + 3κ
2

)
γ − 1

γ + α− 1 < 1. (31)

We define
κ′ := 1−

(
1 + 3κ

2

)
γ − 1

γ + α− 1
which yields ∫ T

0

∫
{η+h<z<η+2H−h}

ργ dydt ≤ C(κ)
(

1 + E1−κ′
)
. (32)

Next, we deal with the near boundary estimates. Recall that we have fixed 0 < h < H
2 . This time

we define

ϕh(t, x, z) :=


z − η(t, x), for η(t, x) < z < η(t, x) + h,

− h
H−h (z − (η(t, x) + h)) + h, for η(t, x) + h < z < η(t, x) + 2H − h,

z − (η(t, x) + 2H), for η(t, x) + 2H − h < z < η(t, x) + 2H.

(33)

Note that for fixed (t, x), ϕh(t, x, z) is piecewise linear in the z variable with slope equal to 1 near the
boundary of the domain. We choose (ϕ, ψ) = (ϕhe2, 0) as test functions in (10) to obtain

∫ T

0

∫
{η<z<η+h}∪{η+2H−h<z<η+2H}

ργ dydt

= h

H − h

∫ T

0

∫
{η+h<z<η+2H−h}

ργ dydt−
∫
Qη
T

ρu · ∂t(ϕhe2) dydt

−
∫
Qη
T

ρu⊗ u : ∇(ϕhe2) dydt+
∫
Qη
T

S(∇u) : ∇(ϕhe2) dydt−
∫
Qη
T

ρF · (ϕhe2) dydt. (34)

We use (32) to bound the first term on the right hand side. In order to bound the remaining terms, we
use similar estimates as in the case of the interior estimates. In fact, the estimates are now more simple
as there are no terms with the Bogovskii operator and the derivatives act directly on the function ϕh

and consequently on η. Therefore we obtain∫ T

0

∫
{η<z<η+h}∪{η+2H−h<z<η+2H}

ργ dydt ≤ C(κ)
(

1 + E1−κ′
)

+ C(κ)
(

1 + E
1
γ+α

γ +κ
)

+ C(κ)
(

1 + E
1+α
γ +κ + E

1
γ+ 5κ

2

)
+ C(κ)

(
1 + E

α
γ +κ

2 + E2κ
)
≤ C(κ)

(
1 + E1−κ′′

)
, (35)

where
κ′′ := min

{
κ′, 1− κ− 1 + α

γ
, 1− 1

γ
− 5κ

2

}
. (36)
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The conditions (15) and (25) ensure that κ′′ > 0. We sum up (32) and (35) and we go back to Ω to
finally deduce ∫

QT

ργ dydt ≤ C(κ)
(

1 + E1−κ′′
)
,

where κ and κ′′ are related through (36).

4.5 Part V - closing the estimates

We notice that for q = 2γ
γ−1∫

QT

ρ|u|2 dydt ≤ C‖ρ‖L∞(0,T ;Lγ(Ω))‖u‖2L2(0,T ;Lq(Ω)) ≤ C(κ)
(

1 + E
1
γ+κ

)
.

Since 1
γ + κ < 1− κ′′ we finally obtain by previous estimates∫ T

0
E(s) ds ≤ C(κ)

(
1 + E1−κ′′

)
≤ C(δ0) + δ0E

for any δ0 > 0. This together with (19) yields

E ≤ C0

(
1 +

∫ T

0
E(s) ds

)
≤ C0(1 + δ0E + C(δ0))

and, consequently,
E ≤ C,

where C depends on f,F,m0, L,H, h and the choice of κ. However, we can choose h = H
4 , and the

choice of κ depends only on the value of γ so the constant C in the end depends only on f,F,m0, γ, L

and H, i.e. the given data and parameters of the problem.

5 Approximate decoupled problem

We introduce the orthogonal basis of L2
#(0, T ) denoted by {τi(t)}i∈N∪{0}, more precisely we set for

k ∈ N ∪ {0}

τ2k(t) = cos
(

2πkt
T

)
, τ2k+1(t) = sin

(
2πkt
T

)
.

We denote by {si(x)}i∈N the orthogonal basis of H1
#,0(Γ) ∩H2

#(Γ) and by {fi(x, z)}i∈N the orthogonal
basis of H1

#(Ω). We define finite-dimensional spaces

Pstrn,m := span{si(x)τj(t)}1≤i≤n,0≤j≤2m,

Pfln,m := span{fi(x, z)τj(t)}1≤i≤n,0≤j≤2m.

We fixm,n ∈ N, we introduce parameters ε > 0 and δ > 0, and we fix a ≥ 5. Here, ε denotes the artificial
diffusion in the continuity equation, but also denotes the penalization parameter between the trace of
the fluid velocity field on the viscoelastic beam and the velocity of the beam itself. The parameter δ then
denotes an artificial pressure coefficient δρa in the momentum equation and it appears in other artificial
terms which help us to get good estimates at the beginning of the proof but have to disappear from the
equations later.

We are ready to present the approximate decoupled and penalized problem which is the starting point
of our existence proof. We fix β ∈ (0, 1), our goal is to find ρ ∈ C0,β

# (0, T ;C2,β
# (Ω))∩C1,β

# (0, T ;C0,β
# (Ω)),

u ∈ Pfln,m and η ∈ Pstrn,m which satisfy the following identities.
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1. The structure momentum equation∫
ΓT
ηtψt dxdt−

∫
ΓT
ηxxψxx dxdt−

∫
ΓT
ηtxψx dxdt−

∫
ΓT

ηt − v · e2

ε
ψ dxdt = −

∫
ΓT
fψ dxdt (37)

holds for all ψ ∈ Pstrn,m, where v = γ|Γ̂ηu.

2. The damped continuity equation

∂tρ+∇ · (ρu)− ε∆ρ+ ερ = εM, (38)

complemented with periodic boundary conditions for ρ holds in the classical sense in Ω, where
M = m0

|Ω| .

3. The fluid momentum equation

δ

∫
QT

u · ∂tϕ dydt+
∫
QT

ρu · ∂tϕ dydt+
∫
QT

ρu⊗ u : ∇ϕdydt+
∫
QT

(ργ + δρa)∇ ·ϕdydt

−
∫
QT

S(∇u) : ∇ϕdydt− δ
∫
QT

|u|2u ·ϕdydt− ε
∫
QT

∇ρ⊗ϕ : ∇u dydt

+ ε

2

∫
QT

(M − ρ)u ·ϕdydt−
∫

ΓT

v− ηte2

ε
·ψ dxdt = −

∫
QT

ρFδ ·ϕdydt, (39)

holds for all ϕ ∈ Pfln,m, where ψ = γ|Γ̂ηϕ and v = γ|Γ̂ηu. Here Fδ denotes a smooth approximation
of F.

5.1 Uniform estimates

We derive the uniform estimates for solutions to the approximate problem (37)-(39). We choose ψ = ηt

in (37), multiply (38) with γ
γ−1ρ

γ−1, then δa
a−1ρ

a−1 and 1
2 |u|

2 and finally choose ϕ = u in (39), and then
sum up these identities to obtain∫

QT

S(∇u) : ∇u dydt+ δ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt+ εγ

∫
QT

ργ−2|∇ρ|2 dydt

+ εγ

γ − 1

∫
QT

ργ dydt+ εδa

∫
QT

ρa−2|∇ρ|2 dydt+ εδa

a− 1

∫
QT

ρa dydt+ 1
ε

∫
ΓT
|v− ηte2|2 dxdt

=
∫

ΓT
fηt dxdt+

∫
QT

ρu · Fδ dydt+ ε

∫
QT

M
γ

γ − 1ρ
γ−1 dydt+ εδ

∫
QT

M
a

a− 1ρ
a−1 dydt

≤ ‖f‖L2(ΓT )‖ηt‖L2(ΓT ) + C‖ρ‖La(QT )‖u‖L4(QT )‖Fδ‖L∞(QT )

+ εγ

4(γ − 1)‖ρ‖
γ
Lγ(QT ) + εδa

4(a− 1)‖ρ‖
a
La(QT ) + C(ε, δ)

≤ C(ε, δ) + 1
2

∫
ΓT
|ηtx|2 dxdt+ εγ

4(γ − 1)‖ρ‖
γ
Lγ(QT ) + εδa

2(a− 1)‖ρ‖
a
La(QT ) + δ

2‖u‖
4
L4(QT ), (40)

where we used

‖ρ‖La(QT )‖u‖L4(QT )‖Fδ‖L∞(QT ) ≤ C‖ρ‖La(QT )‖u‖L4(QT )

≤ εδa

4(a− 1)‖ρ‖
a
La(QT ) + δ

2‖u‖
4
L4(QT ) + C(ε, δ)

which follows from the Young inequality. Some terms on the right hand side of (40) might be absorbed
in the left hand side and thus we deduce∫

QT

S(∇u) : ∇u dydt+ δ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt+εγ

∫
QT

ργ−2|∇ρ|2 dydt+ εγ

γ − 1

∫
QT

ργ dydt

+ εδa

∫
QT

ρa−2|∇ρ|2 dydt+ εδa

a− 1

∫
QT

ρa dydt+ 1
ε

∫
ΓT
|v− ηte2|2 dxdt ≤ C(ε, δ).
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Next, we integrate (38) over Ω to deduce

d

dt

∫
Ω
ρ(t) dy + ε

∫
Ω
ρ(t) dy = εm0,

which yields the only time-periodic solution∫
Ω
ρ(t) dy = m0.

Further estimates of density are deduced by the Lp − Lq theory for parabolic equations applied to
the continuity equation (38). To this end, we estimate the term

∇ · (ρu) = ρ∇ · u + u · ∇ρ

in Lp(0, T, Lq(Ω)) using the information we already have. The term ρ∇·u is easy, as we have bounds for
ρ ∈ La(QT ) and ∇u ∈ L2(QT ). For the other term we use the bound u ∈ L4(QT ) and ∇ρ ∈ L2(QT ),
where the latter follows from a straightforward manipulation with the continuity equation. Hence, we
end up with

‖∂tρ‖Lp(0,T ;Lq(Ω)) + ‖∆ρ‖Lp(0,T ;Lq(Ω)) ≤ C(ε, δ)

for some p, q ∈ (1, 2), more specifically one can take p = q = 4
3 . Finally, we choose ψ = η in (37) to

obtain∫
ΓT
|ηxx|2 dxdt = 1

ε

∫
ΓT

v · e2η dxdt+
∫

ΓT
|ηt|2 dxdt+

∫
ΓT
fη dxdt ≤ C(ε, δ) + 1

2

∫
ΓT
|ηxx|2 dxdt.

To sum up, we have the following set of estimates independent of m,n ∈ N.

‖ηtx‖L2(ΓT ) ≤ C(ε, δ),

‖u‖L4(QT ) ≤ C(ε, δ),

‖u‖L2(0,T ;H1(Ω)) ≤ C(ε, δ),

‖u‖L2(0,T ;Lp(Ω)) ≤ C(ε, δ, p), for any p ∈ (1,∞),

‖ρ‖La(QT ) ≤ C(ε, δ),

‖∂tρ‖Lp(0,T ;Lq(Ω)) + ‖∆ρ‖Lp(0,T ;Lq(Ω)) ≤ C(ε, δ, p, q), for some p, q ∈ (1, 2),

‖η‖L2(0,T ;H2(Γ)) ≤ C(ε, δ).

(41)

5.2 Solution to the approximate problem

Lemma 5.1. Assume f ∈ L2
#(ΓT ), ũ ∈ Pfln,m, and η̃ ∈ Pstrn,m are given and let ṽ = γ|Γ̂η̃ ũ (or equivalently

ṽ(t, x) = ũ(t, x, η̃(t, x))). Then, the following problem∫
ΓT
ηttψ dxdt+

∫
ΓT
ηxxψxx dxdt+

∫
ΓT
ηtxψx dxdt+

∫
ΓT

ηt − ṽ · e2

ε
ψ dxdt =

∫
ΓT
fψ dxdt (42)

for all ψ ∈ Pstrn,m and all t ∈ (0, T ) has a unique solution η ∈ Pstrn,m. Moreover, the mapping (ũ, η̃) 7→ η

is compact from Pfln,m × Pstrn,m to Pstrn,m.

Proof. The idea is to solve (42) in ηt instead of η. Note that, due to time periodicity of η, function ηt
must be mean-value free in time and therefore cannot contain the constant function in time from the
time basis. Therefore, we define S0 = Pstrn,0 = span{si(x)}1≤i≤n and S := (Pstrn,m \S0, || · ||L2(ΓT )) and the
mappings B : S × S → R and a : S → R as

B(u, v) :=
∫

ΓT
utv dxdt+

∫
ΓT
Uxxvxx dxdt+

∫
ΓT
uxvx dxdt+

∫
ΓT

u

ε
v dxdt,

a(v) =
∫

ΓT
fv dxdt+

∫
ΓT

ṽ · e2

ε
v dxdt
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where U(t, x) :=
∫ t

0 u(s, x) ds. Then, our problem can be formulated as finding ηt = u ∈ S such that
B(u, v) = a(v) for all v ∈ S. Obviously, B is bi-linear and a is bounded and linear. Moreover, by
the equivalence of norms in finite basis Pstrn,m, one has B(u, v) ≤ C||u||L2(ΓT )||v||L2(ΓT ). Finally, due to
time-periodicity, one has

B(u, u) = ||ux||2L2(ΓT ) + 1
ε
||u||2L2(ΓT ) ≥ C||u||

2
L2(ΓT ).

Therefore, the solution ηt = u ∈ S follows directly by Lax-Milgram Lemma. Since
∫ t

0 ηt(s, x) ds in
general does not belong to the space S due to integrals of τ2k+1(t), we find η in the form η(t, x) =
PS(

∫ t
0 ηt(s, x)ds) + G(x), where PS is a projection from Pstrn,m onto the space S and G(x) ∈ S0 is a

solution to the elliptic equation

−
∫

ΓT
Gxxψxx dx+

∫
ΓT

ṽ · e2

ε
ψ dx = −

∫
ΓT
fψ dx

for all ψ ∈ S0. The continuity of mapping (ũ, η̃) 7→ η is a direct consequence of linearity of the
equation.

Lemma 5.2. ([19, Lemma 2]) Let ũ ∈ Pfln,m. Then, there exists a unique solution ρ to the following
problem

∂tρ+∇ · (ρũ)− ε∆ρ+ ερ = εM.

Moreover, ρ ∈ C∞# (0, T ;W 2,p
# (Ω)) for any p ∈ (1,∞), the mapping ũ 7→ ρ is continuous and compact

from Pfln,m to W 1,p
# (QT ) and ρ ≥ 0.

Lemma 5.3. Let ũ ∈ Pfln,m, η̃ ∈ Pstrn,m and ρ ∈ C∞# (0, T ;W 2,p
# (Ω)). Then, there exists a solution

u ∈ Pfln,m of

δ

∫
QT

u · ∂tϕ dydt+
∫
QT

ρũ · ∂tϕ dydt+
∫
QT

ρũ⊗ ũ : ∇ϕdydt+
∫
QT

(ργ + δρa)∇ ·ϕdydt

−
∫
QT

S(∇u) : ∇ϕdydt− δ
∫
QT

|u|2u ·ϕdydt− ε
∫
QT

∇ρ⊗ϕ : ∇ũ dydt

+ ε

2

∫
QT

(M − ρ)ũ ·ϕdydt−
∫

ΓT

v− η̃te2

ε
·ψ dxdt = −

∫
QT

ρFδ ·ϕdydt, (43)

for all ϕ ∈ Pfln,m, where ψ = γ|Γ̂η̃ϕ and v = γ|Γ̂η̃u. Moreover, the mapping (ρ, ũ, η̃) 7→ u is continuous
from W 1,p

# (QT )× Pfln,m × Pstrn,m to Pfln,m.

Proof. The existence of solution is straightforward. Indeed, (43) may be rewritten as

Au = RHS

where
Au = P

(
δut −∇ · S(∇u) + δ|u|2u + 1

ε
v
)

where P denotes the projection to Pfln,m and RHS contains all the other terms. The operator A is a
coercive operator on Pfln,m and the classical result then yields that A is also surjective – we refer to [42,
Theorem 2.6].

To prove the continuity, let ρ1, ρ2 ∈ C∞# (0, T ;W 2,p
# (Ω)), ũ1, ũ2 ∈ Pfln,m and η̃1, η̃2 ∈ Pstrn,m be given,

and let u1,u2 ∈ Pfln,m be the corresponding solutions. Denote vi = γ|Γ̂η̃iui for i = 1, 2. We take
the difference of the equation for u1 tested with ϕ = (u1 − u2) and the equation for u2 tested with
ϕ = (u1−u2). We emphasize that even though the test functions ϕ in both equations are the same, the
corresponding ψ are different in both equations, as they are traces of ϕ on different curves η̃i. Since

1
4 |u1 − u2|4 ≤ (|u1|2u1 − |u2|2u2) · (u1 − u2)
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we get∫
QT

S(∇u1 −∇u2) : ∇(u1 − u2) dydt+ δ

4

∫
QT

|u1 − u2|4 dydt+ 1
ε

∫
ΓT
|v1 − v2|2 dxdt

≤
∫
QT

(ρ1ũ1 − ρ2ũ2) · ∂t(u1 − u2) dydt+
∫
QT

(ρ1ũ1 ⊗ ũ1 − ρ2ũ2 ⊗ ũ2) : ∇(u1 − u2) dydt

+
∫
QT

(ργ1 − ρ
γ
2 + δρa1 − δρa2)∇ · (u1 − u2) dydt− ε

∫
QT

(∇ρ1 −∇ρ2)⊗ (u1 − u2) : ∇ũ1 dydt

+ ε

∫
QT

∇ρ2 ⊗ (u1 − u2) : ∇(ũ2 − ũ1) dydt+ ε

2

∫
QT

M(ũ1 − ũ2) · (u1 − u2) dydt

− ε

2

∫
QT

(ρ1 − ρ2)ũ2 · (u1 − u2) dydt− ε

2

∫
QT

ρ1(ũ1 − ũ2) · (u1 − u2) dydt

+
∫
QT

(ρ1 − ρ2)Fδ · (u1 − u2) dydt− 1
ε

∫
ΓT

(γ|Γ̂η̃1 u1 − γ|Γ̂η̃2 u2) · (γ|Γ̂η̃2 u2 − γ|Γ̂η̃1 u2) dxdt

− 1
ε

∫
ΓT
γ|Γ̂η̃2 u2 · (γ|Γ̂η̃2 (u2 − u1)− γ|Γ̂η̃1 (u2 − u1)) dxdt

+ 1
ε

∫
ΓT

(η̃1t − η̃2t)e2 · γ|Γ̂η̃1 (u1 − u2) dxdt

+ 1
ε

∫
ΓT
η̃2te2 · (γ|Γ̂η̃1 (u1 − u2)− γ|Γ̂η̃2 (u1 − u2)) dxdt

where we used that∫
ΓT
γ|Γ̂η̃1 u1 · γ|Γ̂η̃1 (u1 − u2) dxdt−

∫
ΓT
γ|Γ̂η̃2 u2 · γ|Γ̂η̃2 (u1 − u2) dxdt

=
∫

ΓT
γ|Γ̂η̃1 u1 · (γ|Γ̂η̃1 u1 − γ|Γ̂η̃2 u2) dxdt−

∫
ΓT
γ|Γ̂η̃2 u2 · (γ|Γ̂η̃1 u1 − γ|Γ̂η̃2 u2) dxdt

+
∫

ΓT
γ|Γ̂η̃1 u1 · (γ|Γ̂η̃2 u2 − γ|Γ̂η̃1 u2) dxdt−

∫
ΓT
γ|Γ̂η̃2 u2 · (γ|Γ̂η̃2 u1 − γ|Γ̂η̃1 u1) dxdt

=
∫

ΓT
|γ|Γ̂η̃1 u1 − γ|Γ̂η̃2 u2|2︸ ︷︷ ︸

=|v1−v2|2

dxdt+
∫

ΓT
(γ|Γ̂η̃1 u1 − γ|Γ̂η̃2 u2) · (γ|Γ̂η̃2 u2 − γ|Γ̂η̃1 u2) dxdt

+
∫

ΓT
γ|Γ̂η̃2 u2 · (γ|Γ̂η̃2 (u2 − u1)− γ|Γ̂η̃1 (u2 − u1)) dxdt.

The convective term is treated as follows∫
QT

(ρ1ũ1 ⊗ ũ1 − ρ2ũ2 ⊗ ũ2) : ∇(u1 − u2) dydt

≤ C
∫
QT

(|ρ1 − ρ2|2 + |ũ1 − ũ2|2) dydt+ c

∫
QT

|∇(u1 − u2)|2 dydt

where c is taken small enough to absorb the term into the left hand side using the Korn inequality and
C depends on the functions and m,n, ε, δ and c. The remaining terms on QT are estimated in a similar
fashion. The most involved boundary term is the following

1
ε

∫
ΓT
γ|Γ̂η2 u2 · (γ|Γ̂η2 (u2 − u1)− γ|Γ̂η1 (u2 − u1)) dxdt ≤ C

∫
ΓT

(η̃1 − η̃2)‖∂zu1 − ∂zu2‖C(QT ) dxdt

≤ C
∫

ΓT
|η̃1 − η̃2|2 dxdt+ δ

16

∫
QT

|u1 − u2|2 dydt,

by the equivalence of norms in a finite basis, where we have also used

γ|Γ̂η2 (u2 − u1)(t, x)− γ|Γ̂η1 (u2 − u1)(t, x) = (u2 − u1)(t, x, η̃1(t, x))− (u2 − u1)(t, x, η̃2(t, x))

= (η̃1(t, x)− η̃2(t, x))∂z(u2 − u1)(t, x, θη̃1(t, x) + (1− θ)η̃2(t, x)), θ ∈ (0, 1),
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which follows by the mean value theorem. We estimate the other terms similarly and we end up with∫
QT

S(∇u1 −∇u2) : ∇(u1 − u2) dydt+ δ

∫
QT

|u1 − u2|4 dydt+ 1
ε

∫
ΓT
|v1 − v2|2 dxdt

≤ C
∫
QT

|∇ρ1 −∇ρ2|2 dydt+ C

∫
QT

|ρ1 − ρ2|2 dydt+ C

∫
QT

|ũ1 − ũ2|2 dydt

+ C

∫
ΓT
|η̃1 − η̃2|2 dxdt+ C

∫
ΓT
|η̃1t − η̃2t|2 dxdt,

so the solution mapping is continuous.

Lemma 5.4. There exists a solution (ρ,u, η) to the approximate problem (37)− (39).

Proof. We define an operator

T : P
str
n,m × Pfln,m → Pstrn,m × Pfln,m,

(η̃, ũ) 7→ (η,u),

where η = η(ũ, η̃) is obtained in Lemma 5.1, ρ = ρ(ũ) is obtained in Lemma 5.2 and u = u(ρ, ũ, η̃) is
the solution obtained in Lemma 5.3. As a consequence of these lemmas, mapping T is continuous and
it is compact.

It remains to show that the set

{(η̃, ũ) ∈ Pstrn,m × Pfln,m : λT (η̃, ũ) = (η̃, ũ), λ ∈ [0, 1]} (44)

is bounded. We denote (η,u) = T (η̃, ũ) and emphasize that points from (44) satisfy λ(η,u) = (η̃, ũ).
We test (43) by ϕ = ũ = λu and (42) by ψ = ηt. Recalling ρ = ρ(ũ) and making similar calculations as
in (40) we obtain

λ

∫
QT

S(∇u) : ∇u dydt+ λδ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt

+ ε

∫
QT

ργ−2|∇ρ|2 dydt+ εγ

γ − 1

∫
QT

ργ dydt+ εδa

∫
QT

ρa−2|∇ρ|2 dydt+ εδa

a− 1

∫
QT

ρa dydt

+ λ

2ε

∫
ΓT
|v− ληt|2 dxdt+ λ

2ε

∫
ΓT
|v|2 dxdt+ 1

2ε

∫
ΓT
|λv · e2 − ηt|2 dxdt+ 1

2ε

∫
ΓT
|ηt|2 dxdt

=
∫

ΓT
fηt dxdt+ λ

∫
QT

ρFδ · u dydt+ εMγ

γ − 1

∫
QT

ργ−1 dydt+ εδMa

a− 1

∫
QT

ρa−1 dydt

+ λ3

2ε

∫
ΓT
|ηt|2 dxdt+ λ2

2ε

∫
ΓT
|v · e2|2 dxdt

where v = γ|Γ̂η̃u. The first four terms on the right hand side can be dealt with as in (40). The last two
terms can be easily absorbed to the left hand side as λ ≤ 1. We obtain

λ

∫
QT

S(∇u) : ∇u dydt+ λδ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt ≤ C

which provides by multiplying with suitable powers of λ∫
QT

S(∇ũ) : ũ dydt+ δ

∫
QT

|ũ|4 dydt+
∫

ΓT
|η̃tx|2 dxdt ≤ C,

hence the set (44) is bounded. The desired claim then follows by the Schaeffer fixed point theorem.
Finally, since ρ is a solution to (38), classical theory of parabolic equations implies Hölder regularity

of ρ.
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6 Time basis limit m→∞
Denote the approximate solution obtained in previous section as (ρm,um, ηm). One obtains from
(39) and (41) that ∂tum is bounded by a constant independent from m in L1(0, T ; span{fi}1≤i≤n).
This means that um is bounded in L∞(0, T ; span{fi}1≤i≤n), so one can again estimate ∂tum in a
better space Lp#(0, T ; span{fi}1≤i≤n), for any p < ∞. Similarly, the equation (37) implies ∂ttηm ∈
Lp#(0, T ; span{si}1≤i≤n) for any p < ∞. This together with (41) allow us to pass to the limit m → ∞
in most terms in the system (37)-(39). The following lemma allows us to pass to the limit in the trace
terms.

Lemma 6.1. Let um ⇀ u weakly in L2
#(0, T ;H1

#(Ω)) and let ηm ⇀ η weakly in L∞# (0, T ;H2
#(Γ)) and

in H1
#(0, T ;H1

#,0(Γ)). Then∫
ΓT

um(t, x, ηm(t, x)) ·ψ(t, x) dxdt→
∫

ΓT
u(t, x, η(t, x)) ·ψ(t, x) dxdt

for all ψ ∈ C∞#,0(ΓT ).

Proof. Denote ũm(t, x, z) = um(t, x, z + ηm(t, x)). The Sobolev embedding theorem implies (ηm)x is
bounded in L∞(Γt) and therefore ũm is bounded in L2

#(0, T ;H1
#(Ω)). We extract a subsequence con-

verging to some U weakly in L2
#(0, T ;H1

#(Ω)). Our aim is to identify the limit as U(t, x, z) = ũ(t, x, z) :=
u(t, x, z + η(t, x)). Denote wm := um − u. We have

(ũm − ũ)(t, x, z) = wm(t, x, z + ηm(t, x)) + u(t, x, z + ηm(t, x))− u(t, x, z + η(t, x))

Fix ϕ ∈ C∞# (QT ). Then∫
QT

wm(t, x, z + ηm(t, x)) ·ϕ(t, x, z) dydt =
∫
QT

wm(t, x, z) ·ϕ(t, x, z − ηm(t, x)) dydt,

where wm converges weakly in L2
#(0, T ;H1

#(Ω)) to zero and ϕ(t, x, z − ηm(t, x)) converges strongly in,
say, L2

#(QT ) to ϕ(t, x, z − η(t, x)), since ηm → η uniformly in ΓT . The same property implies also

u(t, x, z + ηm(t, x))− u(t, x, z + η(t, x))→ 0 a.e. in QT .

This proves that ũm ⇀ ũ weakly in L2
#(0, T ;H1

#(Ω)) and the claim of the Lemma follows.

We pass to the limit m→∞ in (37)-(39). We denote by (ρ,u, η) the limit of (ρm,um, ηm). The tripple
(ρ,u, η) fulfills

ρ ∈W 1,p
# (0, T ;Lq#(Ω)) ∩ Lp#(0, T ;W 2,q

# (Ω)), for some p, q ∈ (1, 2),

u ∈W 1,p
# (0, T ; span{fi}1≤i≤n), for any p <∞,

η ∈W 2,p
# (0, T ; span{si}1≤i≤n), for any p <∞.

The structure momentum equation∫
ΓT
ηtψt dxdt−

∫
ΓT
ηxxψxx dxdt−

∫
ΓT
ηtxψx dxdt−

∫
ΓT

ηt − v · e2

ε
ψ dxdt = −

∫
ΓT
fψ dxdt (45)

holds for all ψ ∈ C∞# (0, T ; span{si}1≤i≤n).

The damped continuity equation

∂tρ+∇ · (ρu)− ε∆ρ+ ερ = εM, (46)

holds almost everywhere in QT .
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The fluid momentum equation

δ

∫
QT

u · ∂tϕ dydt+
∫
QT

ρu · ∂tϕ dydt+
∫
QT

ρu⊗ u : ∇ϕdydt+
∫
QT

(ργ + δρa)∇ ·ϕdydt

−
∫
QT

S(∇u) : ∇ϕdydt− δ
∫
QT

|u|2u ·ϕdydt− ε
∫
QT

∇ρ⊗ϕ : ∇u dydt

+ ε

2

∫
QT

(M − ρ)u ·ϕdydt−
∫

ΓT

v− ηte2

ε
·ψ dxdt = −

∫
QT

ρFδ ·ϕdydt (47)

holds for all ϕ ∈ C∞# (0, T ; span{fi}1≤i≤n), where ψ = γ|Γ̂ηϕ and v = γ|Γ̂ηu in both (45) and (47).

6.1 Uniform estimates independent of n

First, we take φ ∈ C∞# (0, T ) and choose ψ = φηt in (45), then multiply (46) with γ
γ−1φρ

γ−1, then
δa
a−1φρ

a−1 and 1
2φ|u|

2 and finally choose ϕ = φu in (47), and then sum up these identities to obtain

−
∫ T

0
φt(t)Eδ(t) dt+

∫
QT

φS(∇u) : ∇u dydt+ δ

∫
QT

φ|u|4 dydt+
∫

ΓT
φ|ηtx|2 dxdt

+ εγ

∫
QT

φργ−2|∇ρ|2 dydt+ εγ

γ − 1

∫
QT

φργ dydt+ εδa

∫
QT

φρa−2|∇ρ|2 dydt

+ εδa

a− 1

∫
QT

φρa dydt+ 1
ε

∫
ΓT
φ|v− ηte2|2 dxdt =

=
∫

ΓT
φfηt dxdt+

∫
QT

φρu · Fδ dydt+ ε

∫
QT

M
γ

γ − 1φρ
γ−1 dydt+ εδ

∫
QT

M
a

a− 1φρ
a−1 dydt (48)

where

Eδ(t) :=
∫

Ω

(
1
2ρ|u|

2 + δ

2 |u|
2 + 1

γ − 1ρ
γ + δ

a− 1ρ
a

)
(t) dy +

∫
Γ

(
1
2 |ηt|

2 + 1
2 |ηxx|

2
)

(t) dx. (49)

Choose φ = 1 to get∫
QT

S(∇u) : ∇u dydt+ δ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt+ εγ

∫
QT

ργ−2|∇ρ|2 dydt

+ εγ

γ − 1

∫
QT

ργ dydt+ εδa

∫
QT

ρa−2|∇ρ|2 dydt+ εδa

a− 1

∫
QT

ρa dydt+ 1
ε

∫
ΓT
|v− ηte2|2 dxdt =

=
∫

ΓT
fηt dxdt+

∫
QT

ρu · Fδ dydt+ ε

∫
QT

M
γ

γ − 1ρ
γ−1 dydt+ εδ

∫
QT

M
a

a− 1ρ
a−1 dydt.

We deduce similarly to (40)∫
QT

S(∇u) : ∇u dydt+ δ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt+ εγ

∫
QT

ργ−2|∇ρ|2 dydt

+ εγ

γ − 1

∫
QT

ργ dydt+ εδa

∫
QT

ρa−2|∇ρ|2 dydt+ εδa

a− 1

∫
QT

ρa dydt

+ 1
ε

∫
ΓT
|v− ηte2|2 dxdt ≤ C(ε, δ). (50)

Next, we take a sequence of φk → χ[s,t], we integrate over (0, T ) w.r.t. s and take a supremum over t to
deduce

sup
t∈(0,T )

Eδ(t) ≤
1
T

∫ T

0
Eδ(s) ds+

∫
ΓT
|fηt|dxdτ

+
∫
QT

|ρu · Fδ|dydτ + εM

∫
QT

(
γ

γ − 1ρ
γ−1 + δa

a− 1ρ
a−1
)

dydτ. (51)
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The last four terms can be bounded as in (40). Moreover, (50) implies∫
QT

(
1
2ρ|u|

2 + δ

2 |u|
2 + 1

γ − 1ρ
γ + δ

a− 1ρ
a

)
dydt+

∫
ΓT

1
2 |ηt|

2 dxdt ≤ C(ε, δ).

We choose ψ = η in (45) to obtain
∫

ΓT |ηxx|
2 ≤ C(ε, δ). Thus, (51) and previous estimates yield

sup
t∈(0,T )

Eδ(t) ≤ C(ε, δ). (52)

We showed that (41) still holds and moreover we have additional bounds independent of n ∈ N from
(52), namely

‖ηxx‖L∞(0,T ;L2(Γ)) ≤ C(ε, δ),

‖ηt‖L∞(0,T ;L2(Γ)) ≤ C(ε, δ),

‖u‖L∞(0,T ;L2(Ω)) ≤ C(ε, δ),

‖√ρu‖L∞(0,T ;L2(Ω)) ≤ C(ε, δ),

‖ρ‖L∞(0,T ;La(Ω)) ≤ C(ε, δ).

(53)

7 Spatial basis limit n→∞
Denote the solution obtained in previous section as (ρn,un, ηn). The uniform bounds (41) and (53) give
rise to convergences

ρn ⇀ ρ weakly∗ in L∞# (0, T ;La#(Ω)) and weakly in W 1,p
# (0, T ;Lq#(Ω)) ∩ Lp#(0, T ;W 2,q

# (Ω)),

un ⇀ u weakly∗ in L∞# (0, T ;L2
#(Ω)) and weakly in L2

#(0, T ;H1
#(Ω)),

ηn ⇀ η weakly∗ in L∞# (0, T ;H2
#(Γ)) and weakly in H1

#(0, T ;H1
#,0(Γ)),

for some p, q ∈ (1, 2). Our goal now is to pass to the limit n→∞ in (45), (46), (47) and (48).

7.1 Limit in the structure momentum equation

First, (45) is a linear equation and thus the weak convergence is sufficient to claim∫
ΓT
ηtψt dxdt−

∫
ΓT
ηxxψxx dxdt−

∫
ΓT
ηtxψx dxdt−

∫
ΓT

ηt − v · e2

ε
ψ dxdt = −

∫
ΓT
fψ dxdt, (54)

for all ψ ∈ C∞#,0(ΓT ). We have ‖∂ttηn‖L2(0,T ;(H2
#,0(Γ))∗) ≤ C(ε, δ) due to (45). This together with

‖∂tηn‖L2
#(0,T ;H1(Γ)) ≤ C(ε, δ) imply that

∂tηn → ∂tη strongly in L2
#(ΓT ). (55)

We choose ψ = ηn in (45) and ψ = η in (54) and we compare these two identities to conclude∫
ΓT
|∂xxηn|2 dxdt→

∫
ΓT
|∂xxη|2 dxdt. (56)

7.2 Limit in the continuity equation

We proceed to a limit in the continuity equation. Estimates (41) and (53) yield that (upon passing to a
suitable subsequence)

∂tρ+∇ · (ρu)− ε∆ρ+ ερ = εM (57)

almost everywhere in QT . We multiply (46) by ρn, integrate the resulting equation over QT and we
pass to the limit n→∞. We compare the result with (57) multiplied by ρ and integrated over QT . We
deduce ∫

QT

|∇ρn|2 dydt→
∫
QT

|∇ρ|2 dydt

so
∇ρn → ∇ρ strongly in L2(QT ). (58)
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7.3 Limit in the fluid momentum equation

We start with the observation that bounds (41) allow to bound ρu in L 20
9 (QT ), which in turn implies

‖∇ρn‖
L

20
9 (QT )

≤ C(ε, δ). Consequently, we use (39), to obtain

‖∂t((δ + ρn)un)‖(L20
# (0,T ;W 2,p

# (Ω)))∗ ≤ C(ε, δ)

for some p > 2. Moreover, uniform bounds yield ‖(δ + ρn)un‖
L∞(0,T ;L

2a
a+1 (Ω))

≤ C(ε, δ) and we infer
‖(δ + ρn)un‖L∞# (0,T ;(W s,2

# (Ω))∗) ≤ C(ε, δ) for some s < 1. This however means that

(δ + ρn)un → (δ + ρ)u strongly in L∞# (0, T ; (W s′,2
# (Ω))∗) (59)

for some s < s′ < 1, and consequently by the weak convergence un ⇀ u in L2
#(0, T ;H1

#(Ω))

(ρn + δ)un ⊗ un ⇀ (ρ+ δ)u⊗ u weakly in Lp#(QT ) for some p > 1. (60)

Since 0 ≤ ρn
ρn+δ < 1 and ρn → ρ a.e. in QT , one concludes that ρn

ρn+δ →
ρ
ρ+δ in Lq#(QT ) for any q ∈ [1,∞)

so
ρn

ρn + δ
(ρn + δ)un ⊗ un = ρnun ⊗ un ⇀ ρu⊗ u in L1

#(QT ).

The weak convergence un ⇀ u in L2
#(0, T ;H1

#(Ω)) and the strong convergence of ∇ρn in L2
#(QT )

obtained in (58) yield ∫
QT

∇ρn ⊗ϕ : ∇un dydt→
∫
QT

∇ρ⊗ϕ : ∇u dydt,

for any ϕ ∈ C∞# (QT ). The remaining terms are dealt with in a straightforward fashion by means of
uniform bounds and Lemma 6.1 is used to pass to the limit in the trace term. Therefore, when we let
n→∞ in (47) we end up with

δ

∫
QT

u · ∂tϕ dydt+
∫
QT

ρu · ∂tϕ dydt+
∫
QT

ρu⊗ u : ∇ϕdydt+
∫
QT

(ργ + δρa)∇ ·ϕdydt

−
∫
QT

S(∇u) : ∇ϕdydt− δ
∫
QT

|u|2u ·ϕdydt− ε
∫
QT

∇ρ⊗ϕ : ∇u dydt

+ ε

2

∫
QT

(M − ρ)u ·ϕdydt−
∫

ΓT

v− ηte2

ε
·ψ dxdt =

∫
QT

ρFδ ·ϕdydt, (61)

for all ϕ ∈ C∞# (QT ) and ψ ∈ C∞# (ΓT ) such that ϕ(t, x, η̂(t, x)) = ψ(t, x) on ΓT , where v = γ|Γ̂ηu.

7.4 Limit in the energy inequality

The information gathered above is clearly sufficient to pass to the limit in all terms on the right hand
side of (48). In order to pass to the limit on the left hand side we first note that (55), (56) together with
(60) and the information about the sequence of densities allows us to pass to the limit in the first term
on the left hand side of (48). Finally, we assume that φ ∈ C∞# (0, T ) satisfies moreover φ ≥ 0 and we use
weak lower semicontinuity of convex functions to deduce that in the limit, (48) holds as an inequality

−
∫ T

0
φt(t)Eδ(t) dt+

∫
QT

φS(∇u) : ∇u dydt+ δ

∫
QT

φ|u|4 dydt+
∫

ΓT
φ|ηtx|2 dxdt

+ εγ

∫
QT

φργ−2|∇ρ|2 dydt+ εγ

γ − 1

∫
QT

φργ dydt+ εδa

∫
QT

φρa−2|∇ρ|2 dydt

+ εδa

a− 1

∫
QT

φρa dydt+ 1
ε

∫
ΓT
φ|v− ηte2|2 dxdt ≤

∫
ΓT
φfηt dxdt

+
∫
QT

φρu · Fδ dydt+ ε

∫
QT

M
γ

γ − 1φρ
γ−1 dydt+ εδ

∫
QT

M
a

a− 1φρ
a−1 dydt (62)

where Eδ is defined by (49).
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7.5 Uniform bounds independent of ε

We use the energy inequality (62) to deduce estimates of (ρ,u, η) independent of ε. We start by taking
φ = 1 in (62) to get∫

QT

S(∇u) : ∇u dydt+ δ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt+ εγ

∫
QT

ργ−2|∇ρ|2 dydt

+ εγ

γ − 1

∫
QT

ργ dydt+ εδa

∫
QT

ρa−2|∇ρ|2 dydt+ εδa

a− 1

∫
QT

ρa dydt+ 1
ε

∫
ΓT
|v− ηte2|2 dxdt

≤
∫

ΓT
fηt dxdt+

∫
QT

ρu · Fδ dydt+ ε

∫
QT

M
γ

γ − 1ρ
γ−1 dydt+ εδ

∫
QT

M
a

a− 1ρ
a−1 dydt. (63)

The estimates here need to be more delicate than in the previous section as we no longer have directly
information about the density independent of ε on the left hand side of (63). Therefore we introduce
(recall (49))

Eδ := sup
t∈(0,T )

Eδ(t). (64)

We take φ→ χ[s,t] in (62), we integrate over (0, T ) with respect to s and finally we take the supremum
over t to get

Eδ ≤
1
T

∫ T

0
Eδ(s) ds+

∫
ΓT
fηt dxdt+

∫
QT

ρu · Fδ dydt

+ ε

∫
QT

M
γ

γ − 1ρ
γ−1 dydt+ εδ

∫
QT

M
a

a− 1ρ
a−1 dydt. (65)

Our goal is therefore to bound the terms on the right-hand sides of (63) and (65). The first, third and
fourth terms on the right-hand side of (63) can be absorbed as in (40). The second term has to be
estimated in a different way. Let p > 1 be small and let q = p

p−1 . We have

∫
QT

ρu · Fδ dydt ≤ C‖ρ‖L∞(0,T ;Lp(Ω))‖u‖L2(0,T ;Lq(Ω)) ≤ C‖ρ‖L∞(0,T ;Lp(Ω))‖u‖L2(0,T ;H1(Ω))

≤ C(s, δ)(1 + Esδ ) + δ

2

(∫
QT

S(∇u) : ∇u dydt+
∫
QT

|u|4 dydt
)

for s > 0 as small as we want, where we interpolated Lp between L1 and La. Provided δ < 1, these
terms can be absorbed so it leads to∫

QT

S(∇u) : ∇u dydt+ δ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt+ εγ

∫
QT

ργ−2|∇ρ|2 dydt

+ εγ

γ − 1

∫
QT

ργ dydt+ εδa

∫
QT

ρa−2|∇ρ|2 dydt+ εδa

a− 1

∫
QT

ρa dydt+ 1
ε

∫
ΓT
|v− ηte2|2 dxdt

≤ C(s, δ)(1 + Esδ ).

The last four terms on the right hand side of (65) are treated the same way, hence it remains to show∫ T

0
Eδ(s) ds ≤ C(1 + Eβδ ) (66)

for some β < 1.
We observe that∫

QT

1
2(ρ+ δ)|u|2 dydt+

∫
ΓT

1
2 |ηt|

2 dxdt ≤ C(s, δ)(1 + E
s
2 + s

a

δ + Esδ ).
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We multiply (46) by ρ and integrate over QT to get

ε

∫
(ρ2 + |∇ρ|2) dydt =

∫
QT

−1
2ρ

2∇ · u dydt+
∫
QT

εMρ dydt

≤
(∫

QT

ρ4 dydt
) 1

2

‖u‖L2(0,T ;H1(Ω)) + C ≤
(∫

QT

ρa dydt
) 2
a

C(s, δ)(1 + Esδ ) ≤ C(s, δ)(1 + Es+
2
a

δ ). (67)

Next, we choose ψ = η in (45) and sum up the resulting equation with (47) with the choice ϕ = ηe2.
Most of the calculations can be done in the same way as in Section 4.3, however we need to estimate
several additional terms multiplied by approximation parameters, namely∣∣∣∣∫

QT

δu · ηte2 dydt
∣∣∣∣ ≤ C(δ)‖u‖L4(QT )‖ηt‖L2(0,T ;L∞(Γ)) ≤ C(s, δ)(1 + E

3
4 s

δ ),

∣∣∣∣∫
QT

δ|u|2u · ηe2 dydt
∣∣∣∣ ≤ C(δ)‖u‖3L4(QT )‖η‖L4(ΓT ) ≤ C(s, δ)(1 + E

3
4 s

δ )(‖ηx‖L2(ΓT ) + ‖ηt‖L2(ΓT ))

≤ C(s, δ)(1 + E
3
2 s

δ ) + 1
16‖ηxx‖

2
L2(ΓT ),

∣∣∣∣ε2
∫
QT

(M − ρ)u · ηe2 dydt
∣∣∣∣ ≤ C(δ)(1 + ‖ρ‖L∞(0,T ;Lp(Ω)))‖u‖L2(0,T ;Lq(Ω))‖η‖L2(0,T ;L∞(Γ))

≤ C(s, δ)(1 + E2s
δ ) + 1

16‖ηxx‖
2
L2(ΓT ),

and∣∣∣∣ε∫
QT

∇ρ⊗ (ηe2) : ∇u dydt
∣∣∣∣ ≤ C(δ)‖

√
ε∇ρ‖L2(QT )‖∇u‖L2(QT )‖η‖L∞(ΓT )

≤ C(s, δ)(1 + E2s+ 2
a

δ ) + 1
16‖ηxx‖

2
L2(ΓT ).

Eventually we end up with the estimate∫
ΓT
|ηxx|2 dxdt ≤ C(s, δ)(1 + Es

′

δ ),

for some 0 < s′ < 1.
It remains to show ∫

Ω

(
1

γ − 1ρ
γ + δ

a− 1ρ
a

)
dydt ≤ C(s, δ)(1 + Es

′′

δ ), (68)

for some 0 < s′′ < 1 similarly to Section 4.4. To this end we use ϕh defined in (24) as a test function in
(61). As above in the estimate of second spatial derivatives of η, we obtain four more terms to estimate.
The term δu · ∂tϕh is handled similarly as ρu · ∂tϕh. The remaining three additional terms are easy to
handle due to the estimate

‖ϕh‖L∞(QT ) ≤
∥∥∥∥BΩ

[
ρα −

∫
Ω
ρα dx

]∥∥∥∥
L∞(QT )

≤ C

which follows from (23). Therefore∣∣∣∣∫
QT

δ|u|2u ·ϕh dydt
∣∣∣∣ ≤ C(δ)‖u‖3L4(QT ) ≤ C(s, δ)(1 + E

3
4 s

δ ),

∣∣∣∣ε2
∫
QT

(M − ρ)u ·ϕh dydt
∣∣∣∣ ≤ C(δ)(1 + ‖ρ‖L∞(0,T ;Lp(Ω)))‖u‖L2(0,T ;Lq(Ω)) ≤ C(s, δ)(1 + Esδ ),
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and ∣∣∣∣ε∫
QT

∇ρ⊗ϕh : ∇u dydt
∣∣∣∣ ≤ C(δ)‖

√
ε∇ρ‖L2(QT )‖∇u‖L2(QT ) ≤ C(s, δ)(1 + Es+

1
a

δ ).

In the second part of this procedure we use the test function ϕ = ϕhe2 in (61) with ϕh defined in (33).
The estimates are again either similar to those in Section 4.4 or to those presented above and we recover
(68). This however means that (66) is proved which yields

Eδ ≤ C(δ), (69)

and∫
QT

S(∇u) : ∇u dydt+ δ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt+ εγ

∫
QT

ργ−2|∇ρ|2 dydt

+ εγ

γ − 1

∫
QT

ργ dydt+ εaδ

∫
QT

ρa−2|∇ρ|2 dydt+ εδa

a− 1

∫
QT

ρa+1 dydt

+ 1
ε

∫
ΓT
|v− ηte2|2 dxdt ≤ C(δ). (70)

7.6 Coupled back momentum equation

We sum up the momentum equation (61) for test functions (ϕ, ψ) and the structure momentum equation
(54) for test function ψ. This way the penalization terms get cancelled and we obtain that (ρ,u, η) satisfy
the coupled momentum equation

δ

∫
QT

u · ∂tϕ dydt+
∫
QT

ρu · ∂tϕ dydt+
∫
QT

ρu⊗ u : ∇ϕdydt+
∫
QT

(ργ + δρa)∇ ·ϕdydt

−
∫
QT

S(∇u) : ∇ϕdydt− δ
∫
QT

|u|2u ·ϕdydt− ε
∫
QT

∇ρ⊗ϕ : ∇u dydt+ ε

2

∫
QT

(M − ρ)u ·ϕdydt

−
∫

ΓT
ηtψt dxdt−

∫
ΓT
ηxxψxx dxdt−

∫
ΓT
ηtxψx dxdt = −

∫
ΓT
fψ dxdt−

∫
QT

ρFδ ·ϕdydt, (71)

which holds for all ϕ ∈ C∞# (QT ) and ψ ∈ C∞#,0(ΓT ) such that ϕ(t, x, η̂(t, x)) = ψ(t, x)e2 on ΓT . Note
however, that at this point, the problem is still not fully coupled since we cannot ensure that ηte2 = γ|Γηu.

7.7 Improved estimate of ηxx

The following approach comes from [40], where the improved regularity of displacement was obtained
for the interaction problem between an incompressible viscous fluid and a nonlinear Koiter shell (see
also [46, Theorem 2.2] for the compressible counterpart). We start with introducing the notation Ds

h[η]
defined as

Ds
h[η](x) := η(t, x+ h)− η(t, x)

|h|s−1h
, s > 0, h ∈ R.

The idea is to take s < 1
4 and test the coupled momentum equation (71) with a suitable test function to

obtain an estimate on
∫

ΓT |D
s
h[ηxx]|2 dxdt independent on h < h0 for some h0 > 0. The integration by

parts formula for Ds
h holds for periodic functions, i.e.∫

Γ
Ds
h[u](x)v(x) dx = −

∫
Γ
u(x)Ds

−h[v](x) dx

for all periodic u, v such that the integrals are finite. We set

ψh(t, x) = Ds
−h[Ds

h[η(t, x)]]− 1
|h|2s

(η(t,−h) + η(t, h)) =: ψ1,h(t, x)− ψ2,h(t)
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and use (ψhe2, ψh) as a test function couple in (71) (note that this is an admissible test function because
ψh(t, 0) = 0). This gives rise to

−
∫

ΓT
ηxx(ψh)xx dxdt = RHS,

so by taking into account that (ψh)xx = Ds
−h[Ds

h[η(t, x)xx]] which implies∫
ΓT
|Ds

h[ηxx(t, x)]|2 dxdt = −
∫

ΓT
ηxx(ψh)xx dxdt,

the proof will follow once we show that RHS is bounded.

First, note that

‖Ds
−h[Ds

h[ηt]]‖Lp(Γ) ≤ C‖ηtx‖L2(Γ), (72)

‖Ds
−h[Ds

h[ηx]]‖Lp(Γ) ≤ C‖ηxx‖L2(Γ), (73)

for any p > 1 and s < 1
4 by embedding theorems (see [44, Proposition 2] and [45, Proposition 4.6]).

Moreover, since ||ηtx||L2(ΓT ) ≤ C(δ), we get ηt ∈ L2(0, T ;C 1
2 (Γ)) and thus

ηt(t,±h)
|h| 12

= ηt(t,±h)− ηt(t, 0)
|h| 12

∈ L2(0, T )

with its L2-norm bounded by C(δ). This means that for s < 1
4 it holds ψ2,t ∈ L2(0, T ) and ||ψ2,t||L2(0,T ) ≤

C(δ). This combined with (72) implies

‖Ds
−h[Ds

h[(ψh)t]]‖L2(0,T ;Lp(Γ)) ≤ C‖ηtx‖L2(0,T ;L2(Γ)) ≤ C(δ), (74)

while (73) implies

‖Ds
−h[Ds

h[(ψh)x]]‖L∞(0,T ;Lp(Γ)) ≤ C‖ηxx‖L∞(0,T ;L2(Γ)) ≤ C(δ), (75)

for any p > 1 and s < 1
4 . Finally, since ||ηxx||L∞(0,T ;L2(Γ)) ≤ C(δ) a simple first order Taylor expansion

of η yields
ψ2(t) ≤ C(δ)|h|1−2s ≤ C(δ),

so

‖Ds
−h[Ds

h[(ψh)]]‖L∞(ΓT ) ≤ C(‖ηxx‖L∞(0,T ;L2(Γ)) + ||ψ2,h||L∞(0, T )) ≤ C(δ). (76)

Now, we are ready to show that the arising terms are bounded. First, the bounds of the terms involving
time derivatives of ψh are bounded as follows∣∣∣∣∫
QT

ρu · (∂tψhe2) dydt
∣∣∣∣ ≤ C||ρ||L∞(0,T ;Lγ(Ω))||u||L2(0,T ;Lp(Ω))‖Ds

−h[Ds
h[(ψh)t]]‖L2(0,T ;Lp(Γ)) ≤ C(δ)

for p = 2γ
γ−1 by (74), and

δ

∣∣∣∣∫
QT

u · (∂tψhe2) dydt
∣∣∣∣ ≤ Cδ 3

4 ||δ 1
4 u||L4(QT )‖Ds

−h[Ds
h[(ψh)t]]‖L2(ΓT ) ≤ C(δ),∣∣∣∣∫

ΓT
ηt(ψh)t dxdt

∣∣∣∣ ≤ ||ηt||L2(ΓT )‖Ds
−h[Ds

h[(ψh)t]]‖L2(ΓT ) ≤ C(δ),

by (74) and uniform bounds. Next, the pressure term vanishes since ∇ · (Ds
−h[Ds

h[η]](x)e2) = 0. The
remaining terms all include at most one spatial derivative on ψh. Let us bound only the most "difficult"
terms: ∣∣∣∣ε∫

QT

∇ρ⊗ (ψhe2) : ∇u dydt
∣∣∣∣ ≤ √ε||√ε∇ρ||L2(QT )||ψh||L∞(ΓT )||∇u||L2(QT ) ≤ C(δ)
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by (76), and∣∣∣∣∫
QT

ρu⊗ u : ∇ϕh dydt
∣∣∣∣ ≤ C||ρ||L∞(0,T ;Lγ(Ω))||u||2L2(0,T ;Lp(Ω))||(ψh)x||L∞(0,T ;Lp(Ω))

for p = 3γ
γ−1 , by (75). The remaining terms are bounded in a similar fashion, so we conclude∫

ΓT
|Ds

h[ηxx]|2 ≤ C(δ)

and as a direct consequence of imbedding and uniform bound on η in L2(0, T ;H2(Γ)), one finally obtains

||η||L2(0,T ;H2+s(Γ)) ≤ C(δ) (77)

for any s < 1
4 .

8 Limit ε→ 0
Denote the solutions obtained in previous section as (ρε,uε, ηε). The uniform bounds (69) and (70) give
rise to the following weak convergencies

ρε ⇀ ρ weakly∗ in L∞# (0, T ;La#(Ω)),

uε ⇀ u weakly in L2
#(0, T ;H1

#(Ω)),

ηε ⇀ η weakly∗ in L∞# (0, T ;H2
#(Γ)) and weakly in H1

#(0, T ;H1
#,0(Γ)).

We pass to the limit in the equations (57), (71) and the energy inequality (62).

8.1 Limit in the continuity equation

We use nowadays standard arguments for the continuity equation to get ρε → ρ in Cw([0, T ];La(Ω)) and
therefore ρεuε ⇀ ρu weakly in L∞(0, T ;L

2a
a+1 (Ω)). Moreover, due to (67) and (69) we have ε∇ρε → 0

in L2(QT ). We conclude that the limiting functions ρ and u satisfy the continuity equation in the weak
sense, i.e. ∫

QT

ρ(∂tϕ+ u · ∇ϕ) dydt = 0

for all ϕ ∈ C∞# (QT ). Since ρ ∈ L∞# (0, T ;La#(Ω)) and a ≥ 2 we further get that the renormalized
continuity equation is satisfied by ρ and u, i.e.∫

QT

ρB(ρ)(∂tϕ+ u · ∇ϕ) dydt =
∫
QT

b(ρ)(∇ · u)ϕdydt

for all functions ϕ ∈ C∞# (QT ) and any b ∈ L∞(0,∞) ∩ C[0,∞) such that b(0) = 0 with B(ρ) =
B(1) +

∫ ρ
1
b(z)
z2 dz, see i.e. [20, Section 11.19].

8.2 Limit in the coupled momentum equation

The limit in the equation (71) is more involved. The terms integrated over ΓT are linear and their limits
are straightforward. Regarding the terms integrated over QT , we start similarly as in Section 7.3, deduce
from the continuity equation that

‖ε∇ρε‖
L

20
9 (QT )

≤ C(δ) (78)

and we use this information to estimate

‖∂t((δ + ρε)uε)‖(L20
# (0,T,W 2,p

# (Ω)))∗ ≤ C(δ).
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The continuity equation implies a similar estimate for the time derivative of the density, namely

‖∂tρε‖
(L

10
3

# (0,T,W 1,2
# (Ω)))∗

≤ C(δ).

Using this information and the fact that the sequence of velocities is bounded in L4(QT ) we get in
particular that ∣∣∣∣∫

QT

∂tρεuε ·ϕdydt
∣∣∣∣ ≤ C(δ)

for any ϕ ∈ L20
# (0, T,W 2,p

# (Ω)). Therefore we obtain

δ‖∂tuε‖(L20
# (0,T,W 2,p

# (Ω)))∗ ≤ ‖(δ + ρε)∂tuε‖(L20
# (0,T,W 2,p

# (Ω)))∗

≤ ‖∂t((δ + ρε)uε)‖(L20
# (0,T,W 2,p

# (Ω)))∗ + ‖uε∂tρε‖(L20
# (0,T,W 2,p

# (Ω)))∗ ≤ C(δ).

This bound together with the Aubin-Lions lemma is enough to pass to the limit in the term δ
∫
QT
|u|2u ·

ϕ dydt. We also obtain similar convergences as in (59) and (60), where we combine the latter with the
fact that

uε ⊗ uε → u⊗ u in Lp(QT ) for some p > 1

to pass to the limit in the convective term.
The only remaining term without properly identified limit is the pressure term. Regarding this term,

we first observe that when deriving (68), we proved that ρaε has a better than L1 integrability in the
interior of the domain QηT . However, it is still possible that {ρε}ε>0 might generate some concentrations
near the elastic boundary. We define

ϕεh(t, x, z) :=


z−ηε(t,x)

h , for ηε(t, x) < z < ηε(t, x) + h,

− 1
H−h (z − (ηε(t, x) + h)) + 1, for ηε(t, x) + h < z < ηε(t, x) + 2H − h,

z−(ηε(t,x)+2H)
h , for ηε(t, x) + 2H − h < z < ηε(t, x) + 2H.

We choose ϕ = ϕεhe2 in (71) (with ψ = 0) and we compute similarly as in (35) to get∫ T

0

∫
{η<z<η+h}∪{η+2H−h<z<η+2H}

(ργε + δρaε) dydt ≤ C(δ)hs, (79)

for some s > 0. Indeed, to obtain this kind of estimate it is enough to observe that all arising terms have
better than L1 integrability in the space variable. Here we in particular use once again (78).

Estimate (79) means that the sequence {ργε + δρaε}ε>0 is uniformly integrable so there exists its weak
limit in L1(QT ) denoted as pδ(ρ). In order to identify pδ(ρ), one can use the standard approach on
compact subsets of QηT based on convergence of effective viscous flux, renormalized continuity equation
and monotonicity argument (see [20]) in order to conclude that

ρε → ρ, a.e. in QT .

This is enough to identify pδ(ρ) as ργ + δρa.
Finally, let us point out that the kinematic coupling ∂tηe2 = γ|Γηu is recovered due to the bound

(70). We have proved that the limit functions (ρ,u, η) satisfy∫
QT

(δ + ρ)u · ∂tϕ dydt+
∫
QT

(ρu⊗ u) : ∇ϕdydt+
∫
QT

(ργ + δρa)(∇ ·ϕ) dydt

−
∫
QT

S(∇u) : ∇ϕdydt+ δ

∫
QT

|u|2u ·ϕdydt+
∫

ΓT
ηtψt dxdt−

∫
ΓT
ηxxψxx dxdt−

∫
ΓT
ηtxψx dxdt

= −
∫

ΓT
fψ dxdt−

∫
QT

ρFδ ·ϕdydt (80)

for all ϕ ∈ C∞# (QT ) and ψ ∈ C∞#,0(ΓT ) such that ϕ(t, x, η̂(t, x)) = ψ(t, x)e2 on ΓT .
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8.3 Limit in the energy inequality

Our aim here is to pass to the limit in (62), where φ ∈ C∞# (0, T ), φ ≥ 0. First, it is easy to pass to the
limit on the right hand side, in particular the last two terms converge to zero. On the left hand side we
simply discard the penalization term

1
ε

∫
ΓT
φ|vε − (ηε)te2|2 dxdt,

because it is obviously non-negative. We apply the same argument for the terms

εγ

∫
QT

φργ−2
ε |∇ρε|2 dydt+ εδa

∫
QT

φρa−2
ε |∇ρε|2 dydt.

The uniform bounds (69) and (64) imply that

εγ

γ − 1

∫
QT

φργε dydt+ εδa

a− 1

∫
QT

φρaε → 0 dydt.

Next, we use the weak lower semicontinuity of convex functions to pass to the limit in the terms∫
QT

φS(∇uε) : ∇uε dydt+ δ

∫
QT

φ|uε|4 dydt+
∫

ΓT
φ|(ηε)tx|2 dxdt.

It remains to identify the limit of the first term in (62), namely∫ T

0
φt(t)Eδ(t) dt

=
∫
QT

(
1
2ρε|uε|

2 + δ

2 |uε|
2 + 1

γ − 1ρ
γ
ε + δ

a− 1ρ
a
ε

)
φt dydt+

∫
ΓT

(
1
2 |(ηε)t|

2 + 1
2 |(ηε)xx|

2
)
φt dxdt.

We use the same arguments as when passing to the limit in the convective term in the coupled momentum
equation to obtain

1
2

∫
QT

(δ|uε|2 + ρε|uε|2)φt(t) dydt→ 1
2

∫
QT

(δ|u|2 + ρ|u|2)φt(t) dydt. (81)

Moreover, the a.e. convergence of {ρε}ε>0 and equiintegrability of {ρaε}ε>0, imply∫
QT

(
1

γ − 1ρ
γ
ε + δ

a− 1ρ
a
ε

)
φt(t) dydt→

∫
QT

(
1

γ − 1ρ
γ + δ

a− 1ρ
a

)
φt(t) dydt.

The bound on ∂txηε in L2(ΓT ) and (77) imply ∂xxηε → ∂xxη strongly in L2(ΓT ) so

1
2

∫
ΓT
|∂xxηε|2φt(t) dxdt→ 1

2

∫
ΓT
|∂xxη|2φt(t) dxdt.

It only remains to prove the convergence of the term involving the square of the time derivative of
ηε. First, we choose (ϕ, ψ) = (ηεe2, ηε) in (71) and (ϕ, ψ) = (ηe2, η) in (80) and we compare the two
identities to conclude that∫

QT

(δ + ρε)uε · ∂tηεe2 dydt+
∫

ΓT
|∂tηε|2 dxdt→

∫
QT

(δ + ρ)u · ∂tηe2 dydt+
∫

ΓT
|∂tη|2 dxdt. (82)

Moreover, the strong convergence of (δ + ρε)uε → (δ + ρ)u in L2(0, T ;H− 1
2 (Ωη(t))) and the weak

convergence of uε − Ext[vε] to u− ηte2 in L2(0, T ;H
1
2
0 (Ωη(t))) where Ext[vε](t, x, z) = vε(t, x) imply∫

QT

(δ + ρε)uε ·
(
uε − ∂tηεe2

)
dydt

=
∫
QT

(δ + ρε)uε · (uε − Ext[vε]) dydt+
∫
QT

(δ + ρε)uε · (Ext[vε]− ∂tηεe2)︸ ︷︷ ︸
→0

dydt

→
∫
QT

(δ + ρ)u · (u− ηte2) dydt. (83)
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We sum up (82) and (83) and by (81) we deduce

1
2

∫
ΓT
|∂tηε|2φt(t) dxdt→ 1

2

∫
ΓT
|∂tη|2φt(t) dxdt.

Thus, (ρ,u, η) satisfies

−
∫ T

0
φt(t)Eδ(t) dt+

∫
QT

φS(∇u) : ∇u dydt+ δ

∫
QT

φ|u|4 dydt+
∫

ΓT
φ|ηtx|2 dxdt

≤
∫

ΓT
φfηt dxdt+

∫
QT

φρu · Fδ dydt (84)

for all φ ∈ C∞# (0, T ), φ ≥ 0.

8.4 Estimates independent of δ

At this point, one can adjust the calculations from Section 4 to take into account terms with δ in (80)
in order to deduce estimates independent of δ. We only list main changes with respect to Section 4 here.
The starting point is the energy inequality (84), where we first use test function φ = 1 and follow Section
4.1 to get

δ‖u‖4L4(QT ) + ‖u‖2L2(0,T ;H1(Ω)) + ‖ηt‖2L2(0,T ;H1(Γ)) ≤ C(κ)(1 + Eκδ ). (85)

Next, using the notation for Eδ(t) and Eδ introduced in (49) and (64) respectively, we take a sequence
of test functions φk → χ[s,t], pass to the limit with k →∞ and using calculations of Section 4.2 we get

Eδ ≤ C0

(
1 +

∫ T

0
Eδ(s) ds

)
.

All terms are handled similarly to their counterparts in Section 4.3, there are however two additional
terms with respect to (20). These are treated as follows

δ

∣∣∣∣∫
QT

|u|2u · ηe2 dydt
∣∣∣∣ ≤ δ‖u‖3L4(QT )‖η‖L4(ΓT )

≤ C(κ)(1 + E
3κ
4
δ )(‖ηt‖L2(0,T ;L4(Γ)) + ‖η‖L2(0,T ;L4(Γ))) ≤ C(κ)(1 + E

3κ
2
δ ) + 1

8‖ηxx‖
2
L2(ΓT ),

and
δ

∣∣∣∣∫
QT

u · ηte2 dydt
∣∣∣∣ ≤ C‖u‖L2(0,T ;Lq(Ωη(t)))‖ηt‖L2(0,T ;L∞(Γ)) ≤ C(κ) (1 + Eκδ ) .

Eventually we recover ∫
ΓT
|ηxx|2 dxdt ≤ C(κ)(1 + E3κ

δ ).

Finally, (26) contain the additional term δ
∫
Qη
T
ρa+α dydt on the left hand side and four more terms on

the right hand side. Two terms arise from the δρa in the pressure and these terms are estimated exactly
as in (27) and (28). Next, similarly as in (29)

δ

∣∣∣∣∣
∫
Qη
T

u · ∂tϕh dydt

∣∣∣∣∣ ≤ C(κ)
(

1 + E
α
γ +κ
δ

)
,

and

δ

∣∣∣∣∣
∫
Qη
T

|u|2u ·ϕh dydt

∣∣∣∣∣ ≤ C(1 + E
3
4
δ )

We then continue as in Section 4.4 and end with (30) and thanks to the choice of parameters α, κ we
get (32). We want a similar bound also for δρa, however we can not use the same combination of
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parameters α and κ, because the inequality (31) might not hold if γ is replaced by a. Therefore, we next
set κ̄ := 1

5(a−1) and ᾱ := 2
5 , repeat the calculations of Sections 4.1-4.3 and Section 4.4 in order to deduce

δ

∫ T

0

∫
{η+h<z<η+2H−h}

ρa+ᾱ dydt ≤ δ
∫
Qη
T

ρa+ᾱφh dydt ≤ C(κ̄)
(

1 + E1+ 3κ̄
2

δ

)
.

By interpolation

δ

∫ T

0

∫
{η+h<z<η+2H−h}

ρa dydt ≤ C(κ̄)
(

1 + Eδ1−κ̄′
)
, (86)

where
κ̄′ := 1−

(
1 + 3κ̄

2

)
a− 1

a+ ᾱ− 1 .

We continue with estimates of the pressure near the boundary using the function (33). Again, we
encounter some additional terms in equation (34). To be more precise, terms δρa appear both on the
left hand side and in the first term on the right hand side. The left hand side provides the information
we seek, while the term on the right hand side is bounded using (86). The integrals of δu · ∂t(ϕhe2) and
δ|u|2u · (ϕhe2) yield the powers Eκδ and E

3
4
δ , respectively. Hence, we conclude that there exists κ′′ > 0

such that ∫
QT

ργ + δρa dydt ≤ C
(

1 + E1−κ′′
)
.

Finally, in Section 4.5 we estimate δ
∫
QT
|u|2 by (85) and we obtain

Eδ ≤ C,
∫
QT

S(∇u) : ∇u dydt+ δ

∫
QT

|u|4 dydt+
∫

ΓT
|ηtx|2 dxdt ≤ C. (87)

Similarly to Section 7.7, we obtain
‖η‖2L2(0,T ;H2+s(Γ)) ≤ C, (88)

for some s > 0.

9 Limit δ → 0
Denote the solution obtained in previous section as (ρδ,uδ, ηδ). The goal is to pass to the limit δ → 0
to conclude that the limiting functions (ρ,u, η) represent a weak solution in the sense of Definition 2.1.
The uniform estimates deduced in Section 8.4 give rise to the following convergencies

ρδ ⇀ ρ weakly∗ in L∞# (0, T ;Lγ#(Ω)),

uδ ⇀ u weakly in L2
#(0, T ;H1

#(Ω)),

ηδ ⇀ η weakly∗ in L∞# (0, T ;H2
#(Γ)) and weakly in H1

#(0, T ;H1
#,0(Γ)).

9.1 Limit in the continuity equation

We employ standard arguments from the existence theory of weak solutions to the compressible Navier-
Stokes equations (see i.e. [20]) to deduce that functions ρ and u satisfy the continuity equation in the
weak sense, i.e. ∫

QT

ρ(∂tϕ+ u · ∇ϕ) dxdt = 0

for all ϕ ∈ C∞# (QT ). The validity of the renormalized continuity equation remains open at this moment
since ρ may not possess enough regularity to use a direct argument.
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9.2 Limit in the coupled momentum equation

First, the kinematic coupling u(t, x, η̂(t, x)) = ηt(t, x)e2 is recovered using Lemma 6.1. Our aim is to
pass with δ to zero in (80). Once again, the terms integrated over ΓT are linear and therefore their
limits are straightforward. Estimates (87) are enough to identify 0 as a limit of terms

∫
QT

δu · ∂tϕdydt
and

∫
QT

δ|u|2u · ϕdydt. The limit in the last term on the right hand side is easy. In the remaining
terms we follow the existence theory of weak solutions to the compressible Navier-Stokes equations and
the main task is to deduce the limit in the pressure term, which is closely related to the validity of the
renormalized continuity equation. Both issues are solved by means of the effective viscous flux identity
and boundedness of the oscillations defect measure. We get the pointwise convergence of ρδ → ρ a.e. in
QT and thus recover both (9) and (10).

9.3 Limit in the energy inequality

Finally we need to pass to the limit in (84) in order to prove (11). The limits of the terms on the right
hand side are simple. On the left hand side we simply discard the term δ

∫
QT

φ|u|4 since it is surely
nonnegative and for the second and fourth term on the left hand since we use lower semicontinuity of
convex functions. Therefore it remains to deal with the first term on the left hand side. First, the kinetic
energy term is treated the same way as the convective term in the coupled momentum equation. Next,
it is easy to use (87) to pass to zero in the term containing δ|u|2. Pointwise convergence of densities
allows us to pass to the limit in the pressure terms of Eδ. Improved estimate (88) allows us to pass to
the limit in the last term of Eδ, while a similar procedure as in (82)-(83) provides necessary information
to pass to the limit in the term |ηt|2 of Eδ. Thus we recover (11). The validity of (12) follows from the
calculations in Section 4 with the starting point being the energy inequality (11).
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