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Abstract

In this paper, we study a nonlinear fluid-structure interaction problem between a viscoelastic
beam and a compressible viscous fluid. The beam is immersed in the fluid which fills a two-
dimensional rectangular domain with periodic boundary conditions. Under the effect of periodic
forces acting on the beam and the fluid, at least one time-periodic weak solution is constructed

which has a bounded energy and a fixed prescribed mass.
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1 The model

Let L, H,T > 0 and define
r.=(0,L), Q=(0,L)x (—H,H).

We denote the horizontal variable by = and the vertical variable by z. The fluid fills the domain 2 and
it is described with velocity u : (0,7) x Q — R? and density p : (0,T) x Q@ — R which are periodic in
both the x and the z direction. The beam is immersed in the fluid and its vertical displacement is given
asn:(0,7) x ' — R, while its graph is denoted as

(t) .= {(x,n(t,x)) : x € T}.

In order to work on a fixed domain Q (note that 7 does not necessarily have values in [—H, H]), let us
define a z-periodic version of 5
A(t,x) :=n(t,x) — 2n(t,z)H,

where n(t,z) € Z is uniquely determined by the requirement n(t,z) — 2n(t,z)H € [-H, H). Its graph
I (t) is on Figure 1. The time-space cylinders corresponding to our problem will be denoted as

Qr:=(0,T)xQ, Tp:=(0,T)xT.

The governing equations for our coupled fluid-structure interaction problem read as follows:

The viscoelastic beam equation on I'r:
Nt + Nezzx — NMtxxz = _Snffl -eg + f (1)

Here f denotes a given external time-periodic force acting on the viscoelastic beam and fy; is the force
with which the fluid acts on the beam. Moreover, S7 = /1 + |1, |? is the Jacobian of the transformation
from Eulerian to Lagrangian coordinates of the beam (i.e. from I'? to I').
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Figure 1: Two examples of the beam inside the fluid. On the top, the structure is completely contained in Q so
I'"(t) = ['(t). On the bottom, the structure leaves Q and re-enters from the other side so I'(t) # ['7(t) (the dashed part

represents I'(t) \ I'(¢)).

The compressible Navier-Stokes equations on |J;¢ ) {t} X (Q\ f”(t)):

d(pu)+ V- (pu®u) = —Vp(p) + V- S(Vu) + pF,
dp+ V- (pu) =0,

where we set the pressure p for simplicity to be

the viscous stress tensor S is given by the Newton rheological law
S(Vu) :=p(Vu+V7u—V-ul) +(V-ul, (>0,

and F is a given time-periodic force acting onto the fluid.

The fluid-structure coupling (kinematic and dynamic, resp.) on I'r:

u(t, z,7(t, ),
[[(=p()T+S(Vu)]](t, 2. i(t, z)) v"(t, ),

ne(t, x)esq
ff[(t, l‘)

where 1" = =721 {enotes the normal vector on I' facing upwards and
vV 14+[n2]2

[[A]](-, 2) := lim (A(~, z—¢e)—A(,z+ 5))

e—0t



represents the jump of quantity A in the vertical direction.

The beam boundary conditions:
n is periodic in z and n(t,z) =0, (¢t,z) € (0,T) x {0, L}. (5)
Fluid spatial periodicity:
p,u are periodic in z and z directions. (6)

Time periodicity:

p,u,n are periodic in time. (7)

2 Weak solution and main result

The nature of the studied problem enables us to work with two equivalent formulations of the problem.
In the original formulation, the domain 2 is fixed and the viscoelastic beam appears inside the domain
). However, we may use the z—periodicity of the problem to formulate it on the moving domain Q" (¢)
filled with the fluid, where the top and the bottom of the domain is given by the viscoelastic beam. For

a given 7(t, z) we introduce an equivalent fluid domain and the corresponding time-space cylinder

Q1(t) = {(z,2) 1z € (0,L),n(t,x) < z < n(t,z) +2H},  QF:= |J {t} x Q1) (8)
te(0,T)

AN

Figure 2: Q"(t) on the left and Q on the right.

both domains are demostrated in Figure 2.

For a set! S = (a1,a1+ L) X -+ X (an,an + Ly) where Ly, ...,L, > 0 and n € {1,2, 3}, we introduce
the spaces of differentiable periodic functions for k£ € Ny U {o0}

C;;(S) ={fe Ck(R") sf(zy,y .o xn) = fler+ Ly, oyxn) = o= f(21, 00 X0 + L)
for all (z1,...,2,) € R"}.

We define Lebesgue and Sobolev function spaces for any p,q € [1,00], k € Ny U {oco} as closures in the

respective norms

FearaHlwe e
WyP(S) = C(S) .

1Here, S will represents either one of the sets (0,7), ', Q or some of their products.



In order to accommodate the boundary conditions (5) we further introduce the spaces
Clo(I) = {p € CL(T) : ¢(0) = 0},
C;O(FT) ={pc€ C’;;(FT) 1 p(t,0) =0 for all t € R},

for k € Ng U {o0}, and the corresponding closure

I-llww.»
Wi%(l") = C;;EO,O(F) whro,

Finally, we define
L5,(0, T W9(Q)) »= {f € L5,(0,T: LY (Q)) : Vf € LE(0,T; LL ()},
WP(0,T; LE(T)) = {f € L5 (0,T; LY(T)) : 9pf € LE(0,T; LE(I)}.

As usual, H* denotes Sobolev spaces W*2. For a function f € CL(Q) and n € C’#O(F), we can define
the Lagrangian trace on [ as

7|f“nf(x) = f(xvﬁ@j))

1
and then extend it to a linear and continuous operator p, : H#(Q) — HZ(I"). Here H 2 denotes the
Sobolev-Slobodetskii space. Finally, we will denote the two-dimensional space variable y = (z, 2).

Delﬁnition 2.1 (Weak solution). We say that p € LF(0,T;L},(Q)), u € LL(0,T; Hy(Q)) and n €
W,>(0,T; L3(T) N LE(0,T; Hy(T)) N Hy(0,T; Hy, 4(2)) is a weak solution to (1)-(7) if:

1. The kinematic coupling Vi W = Ni€2 holds on I'p.

2. The renormalized continuity equation
| pB) 0w+ u-Vordydt= | bp)(V - wydyar )
T Qr

holds for all functions ¢ € CZ(Qr) and any b € L>(0,00) N C[0,00) such that b(0) = 0 with
B(p) = B(1) + [/ Y3 d-.

3. The coupled momentum equation

/ pu - Oy dydt + / (pu®@u) : Ve dydt + / P (V- @) dydt — S(Vu) : Ve dydt

T T T Qr

+ / My dedt — / NezVre dxdt — / Nz e dxdt = — fdadt — / pF - podydt (10)
Tr I'r I'r I'r T

holds for all ¢ € CF(Qr) and allp € CFy(T'r) such that ¢(t,z,7(t,z)) = P(t,z)eq on T'r.

We note that the choice b(p) = 0 in (9) recovers the standard weak formulation of the continuity

equation. Our main result reads as follows.

Theorem 2.1 (Main result). Let H,L,T,mo > 0 be given and let v > 1. Let f € Ly (T'r) and
F € L3 (0,T; L (). Then, there exists at least one weak solution to (1)-(7) in the sense of Definition
2.1 such that

/Qp(t) dy =mo

for almost allt € (0,T) and the energy inequality
(IO Loa L

/QT o <2DIUI b ) dydt /FT o <2m| + 51| ) (1) dadt

T T
+/ /¢S(Vu) : Vudydt+/ /¢\ntm|2dxdt

0o Ja o Jr

T T
§/ /q&fntdxdtJr/ /¢pu~dedt (11)

o Jr 0o Ja




holds for all ¢ € C£(0,T), ¢ > 0. Moreover,

S [/ﬂ (%plul2 + ﬁp”) dy +/F (%Iml2 + %I%IQ) dx} (t)

+ S(Vu) : Vudydt —|—/ ez |* dodt < C(f, F,Q,mg). (12)
Qr I'r

Remark 2.1 (Strategy of the proof). The proof of this theorem is based on a four-level approzimation
scheme. Following the approach from [48] (see also [33]), we decouple the coupled momentum equation to
the fluid momentum equation and the structure momentum equation by penalizing the kinematic coupling
condition (3). This allows us to deal with these equations separately. Then, we choose to span the fluid
velocity and the structure displacement in finite time-space bases, as it was done in [19] (note that this
is in contrast with the fized-point approach which was used in [18, 37]). Finally, as it is standard in
the theory of compressible Navier-Stokes equations, artificial diffusion is added to the fluid continuity
equation and the artificial pressure is added to the fluid momentum equation. Several other terms are
also added due to technical reasons. In order to obtain a weak solution, there are four limits that are
performed, each of them being based on estimates that significantly differ from a limit to limit due to their
high sensitivity to the approximation parameters. Unlike the initial value problem, we need to additionally
ensure that the energy inequality of the form (11) is satisfied at each approzimation level to obtain some
important estimates, and for this we need to prove the convergence of the structure kinetic and elastic
energies in each of the limits. This part is based on improved structure displacement estimates from [40],
adapted to our framework similarly as in [40].

Remark 2.2. Throughout the proof, we will work with formulations of the problem both on € and on
O(t). As both the fluid velocity u and density p can be represented on Q"(t) equivalently, we keep the
same notation for u and p whenever we shift to the domain Q"(t). Let us point out that u is continuous
on T(t) so lullwr.eneyy = [ullwrr) for any p € [1,00], while p may have a jump on [7(t) so we use

llpllzenyy = llpllLe() for p € [1,00] only.

3 Discussion and literature overview

The mathematical theory of the interaction problems between incompressible viscous fluids and thin
elastic structures (plates or shells) has started with results of Beirao da Veiga [6] and Grandmont et
al. [15, 21], and continued to develop in the last two decades, see [30, 40, 12, 13, 48, 24, 28] for the
existence of weak solutions, [1, 2, 23, 22, 34, 4, 24, 31, 32] for the existence of strong solutions and
[25, 43] for uniqueness. Theory involving compressible viscous fluids interacting with plates and shells
on the other started quite recently with the result of Schwarzacher and Breit [10], and continued with
[47] where weak solution was obtained for an interaction between a compressible viscous fluid and a
nonlinear thermoelastic plate. Local in time regular solutions were constructed in [39, 35], while the
weak-strong uniqueness for such problems was studied in [46]. In the case of heat-conducting fluids,
interaction with an elastic plate was considered in [11] where a weak solution was constructed which
satisfies the energy equality, and an interaction with a viscoelastic plate was considered in [36] where
the strong solution with maximal regularity was constructed. The interaction of heat-conducting fluids
and thermoelastic shells with heat exchange was studied in [33], where a weak solution was constructed.
The case of mixture with elastic structure was studied in [26]. A semigroup approach to wellposedness
of the problem of interaction of a linearized compressible fluid with an elastic boundary was presented
in [5]. Finally, local in time regular solutions to the interaction problems between 3D elastic solids and
fluids were obtained in [16, 17, 29, 41, 8], while weak solutions were constructed in [7, 9]. We also refer

the reader to a very recent result [27] where such a problem with allowed contact was studied.



With all this in mind, little attention has been given to time-periodic solutions, or more precisely, to
the question when the fluid-structure interaction model has a periodic behaviour under periodic forcing.
Indeed, this question is of big importance, since many models tend to show periodic behavior. For
example, heart beats and air flow through trachea are both periodic. Therefore, one can naturally ask,
under what condition we can expect such models to behave periodically? This was first studied by
Casanova for an interaction problem between a viscoelastic beam and an incompressible fluid [14] in the
framework of strong solutions. Quite recently, Schwarzacher and Mindrild studied the interaction of a
linear Koiter shell with an incompressible viscous fluid and obtained existence of a weak solution with
a closed rigid boundary with no-slip condition in [37] and a dynamic pressure boundary condition in
[38]. Finally, concerning the purely fluid system, the time-periodic weak solutions to the compressible
Navier-Stokes system on a fixed domain were constructed in [18] for isentropic flows and in [19] for the
full Navier-Stokes-Fourier system.

The main goal of this paper is to tackle this issue in the case when the fluid is compressible. This brings
many challenges which do not exist in the incompressible case. The main challenge in the compressible
viscous fluid theory is dealing with pressure and our case is no different. The estimates based on Bogovskii
operator for the pressure are very sensitive to the shape of the domain (and thus on deformations of the
beam) and many other factors including dimension. This directly results in limitations in our result, i.e.
the dimension of the fluid is two, the beam is visoelastic and the fluid domain is periodic in horizontal
and vertical direction which a priori excludes contact for the beam.

The paper is organized as follows. In Section 4 we present a way to obtain a priori estimates assuming
the solution is sufficiently smooth. This procedure is split into several steps. In Section 5 we present
the approximation scheme used in the proof of Theorem 2.1 and prove the existence of a solution to the
approximated system. In Section 6 we pass to the limit in the number of time basis functions m — oo
and present uniform estimates for the arising solution independent of n. In Section 7 we pass to the limit
in the number of spatial basis functions n — oo, deduce uniform bounds independent of € and introduce
the coupled momentum equation. In Section 8, we perform the limit with the penalization and artificial
density diffusion parameter € — 0 and deduce uniform bounds independent of §. Finally, in Section 9
we pass to the limit with § — 0, thus removing the artificial pressure term and finishing the proof of
Theorem 2.1.

4 A priori estimates for smooth solutions

Before we start, let us introduce the energy associated to the studied system as

E(t) := /Q (;pu|2 3 i 1p’y> (t) der/F (;Imﬁ + ;nzﬁ) (t)dz

and we emphasize that replacing ) with 7(t) yields the same quantity, see Remark 2.2. Further, we

denote

€ :=sup F.
(0,7)

The goal of this section is to show that smooth solutions to the problem (1)-(7) satisfies the inequality
(12). This will serve as base in the forthcoming sections, where approximate problems with similar
properties will be studied. We note that since we assume in this section that the solution is smooth, we

are allowed to consider unbounded functions b in (9).



4.1 Part I - estimates of Vu and 7,

In order to obtain the estimates, we sum up (9) with b(p) = p” and ¢ = 1, (9) with b(p) = 0 and
¢ = 2|u|? and (10) with (¢, %) = (u,7;) to obtain

S(Vu):Vudydt—i—/ |ntw|2dxdt:/ fntdxdt—&—/ pu - Fdydt
FT 1—‘T

T

Qr
and thus

/ S(Vu) : Vudydt + (L) el 01001 0

T

< S(Vu) : Vudydt + / 1| dadt = / fne dzdt + / pu - Fdydt
Qr Ir T'r T
< flle2@m el 2oy + 1ol Lo 0,70 () 10l 220, 7520 () 1 | L2 0,75 15¢ (02))

o(L)
< O, L) + =5~ el 2. gy + CEpll s 0,710 [0ll 20,7520 ()

for any p > 1 and ¢ = p’%l by the Poincaré inequality for . We have just deduced that

; S(Vu) : Vadydt + (1] 72 0,751 (1)) < C + Cllpllz= (0,20 [0l 22 0.7:2(02)- (13)
T

From here onward, we omit the dependence of constants on 2, f, F, since they are given and do not
depend on functions p, u,n.
Next, we shift to the moving domain 2"(¢) given in (8). We have

Inee2ll 20,75 (n(e))) = 2H el 20,1557 (7)) -

Due to the kinematic coupling, we have that u —nes = 0 on I'"(¢) and I'"?(¢) + 2H, so by using the Korn
identity on Q"(¢)

[Vu— V(Ute2)||2L2(Q;) +IV - (u- 77te2)‘|iz(Q;) =2[[D(u — 77t92)||2L2(Q;)
< C||S(Vu - V(nte2)”%2(Q;) <C (/Q" S(Vu) : Vudydt + ”nt”%’é’(O,T;Hl(F))) ,
T
where C' only depends on u, (. The Poincaré inequality yields

lu— 77te2H12Hl(m(t)) < C|[Vu-— v(nte2)||%2(9"(t))'

Note that the constant C is independent of i — this follows directly from the proof of the inequality for
the steady domain [3, Theorem 6.30]. We use

Ml Loy < Clinell e vy

and u —mex = 0 on I'"(¢) UT(¢) + 2H to conclude

ullZ2 0.7 aganeey) < 200 —me2ll720.rLanyy + 21me€2l172(0.1.L0am 1))
< Cllu— nteQ||%2(0,T;H1(Q"I(t))) + C||77te2H2L2(O,T;H1(Q”(t)))

<cC o S(Vu) : Vadydt + Cllnel| 720,71 ry)  (14)
T

_. 1 (-1 1
m.—mm{ZO, 5y ,5(7_1)}, (15)

for any 1 < ¢ < co. We set




and
so we have

Then for any 1 < p < p we have for some 0 < 6

Pl o= 07520 @n (1)) < NI L0 2200 @y 1P Te (07527 (@ ey < Cg P70 < C(L+E%). (16)

Since

ol asonon = lollie ooy, [ S(Va): Vadyde= [ 8(%w Vadyd,
T

T

the inequalities (13), (14) and (16) yield
[ullZz 0.7, ) + Il F2 0,71 (ry) < C(R)(L+E5), (17)
for the original domain, and consequently
lullZ2 071y < Clr,q)(1+E) (18)

for all ¢ > 1.

4.2 Part II - circular estimates

In order to deduce the energy inequality, we sum up (9) with b(p) = p” and ¢ = |54, (9) with b(p) =0
and ¢ = X[s,q3[ul* and (10) with (¢, %) = (X[s,qW, X[s,17) to obtain

t t
+/ /S(Vu):VudydT+/ /|77m|2dxd7
s JQ
//fmdxdT—i-/ /pu Fdydr

5) +C(k)(1+E%) < E(s)+ C(k) + KE

by (16), (17), (18) and the Young inequality. We integrate again over (0,7T") with respect to variable s
and then we take a supremum in the variable ¢ over (0,T) on the left hand side to obtain

E<Cy (1 +/T E(s) ds> . (19)
0

The constant Cy depends on the choice of x, however we recall that k is already fixed. Our goal in the
remaining part of the estimates is to show

/T E(S) ds < 505 + 0(60)
0

for some &g € (0, ).

4.3 Part III - estimate of 7,,

In this section we need the following interpolation inequality.

Lemma 4.1. Let g € H(0,T; L*(T")) N L*(0,T; HY(T')). Then for any o € (0,1) it holds
g€ H*(0,T; H*(I))

and there exists a constant C > 0 independent of g such that

||9||Hw(o,T~,H1w(r)) < C||9H?11(07T;L2(r))||9||1L§(%7T;H1(p))-



Proof. First, note that g can easily be extended to R? (also denoted as g) so that

||9||H1(JR;L2(R)) < CHQHHl(O,T;L2(F))a ||g||L2(R;H1(R)) < C||9||L2(0,T;H1(r))~

Denote as F;, F, and F; , the Fourier transform w.r.t. variables ¢t and = and both ¢, z, respectively. One

has:
191y < C / (1+ 022 | F(@) |2 ey do
2\« 2\1—« 2

< C/R“*‘” /R<1+§> Fo(Folg)? dedo
= C [ (14+0*)*Q1+&)"*Fraly)® dédo

R2

2« 2(1—&)

< o[ aromawp aio) ([ a+emaP i)

R2 R2

a 2(1—
= Clgl3t @2 91w )

where we used Holder’s inequality with indexes p = é and ¢ = ﬁ

We use test functions (¢, 1) = (nes,n) in (10), we observe that V - (nez) = 0 and

1
Ir 2 I'r

Consequently,

L M
T

= / pu - nyeq dydt +/ pu®u: V(ney)dydt — S(Vu) : V(nez) dydt —|—/ pnes - F dydt

Qr T
+ / |n¢|* davdt + fndzdt. (20)
FT l—‘T
We fix 1 < p < p, denote g = % and estimate the terms on the right hand side as follows. First,

3k
‘/ pu - nees dydt‘ < Cllpllzeo.r:Lr @) llullz2 0,750 @) 12| 220, 75250 () < C(K) (1 +E3 )
T

by using Sobolev embedding, (16), (17) and (18). In order to estimate the convective term, we utilize

the following estimate

148 15
||77x||L°°(0,T;L3°J(F)) < C||77w||H%+6(07T;H%—5(F)) < CHU:L'”IQ{l(o,T;B(P))H77w||£2(07T;H1(p))

5+6
< (el 2,

146 16

o, sy + el 2o, r:n2 ) 12 220 201 ()
145 15

= C”%HL?(QT;Hl(F)) + O||’r]tac||z2(07T;L2(1"))||nx|‘[2,2(07T;H1(1"))

< C([Inellp2o,m5m (ry) + ezl 20,7522(ry)) - (21)

Here § > 0 is sufficiently small, we have used Sobolev embedding, Lemma 4.1 and the Young inequality

for exponents (3 +6)~! and (3 — 6)~'. We use this estimate to write

\ [ pnon: Viges) dyde] < Cliollmoiraoenlialis el orzse
T

3k 1
< C(R)L+EF) (Inellp2o,m1 () + Il L2 0,152 ry)) < C(k) (1+E%%) + §||77m|\2L2(rT)v



where we have used again (16), (17), (18), and the Young inequality. The viscous term is estimated by

\ [ s(vw): V(ﬂe2)dydt‘ < OISV z2(0m Ine 22 013250
T
1 1
< OHS(VU)”%%QT) + §||77m||2L2(rT) <C(k)(1+E%) + §||77m||2L2(FT)

using (17). We also use (17) directly to estimate

/ In¢|* dedt < C(k) (14 E7).
I'r

Finally,

1
‘/ pres 'dedt' < Cllpll Lo o,r;rr ) 10l 220,730 (o)) IF || L2 (0,135 (2)) < C + §||Tla:x||2L2(rT)
T

and )
[ o] < W= lilasen < O+ Gl
T

by using the Poincaré inequality twice together with the boundary condition (5). All the estimates
together with (20) yield

/ a2 dadt < C()(1 4+ E3). (22)

4.4 Part IV - density/pressure estimates

Denote the Bogovskii operator as Bq : L5 () — WO1 P(Q). This operator satisfies
V- Baolf] =,
where ZE(®) i= {f € LP(@) : [, f = 0} and WEP(Q) i= {f € WP(Q) : flpg = 0}. Morcover,
I1Balflllwrr@y < Cllfllor -

Throughout the rest of this section, we will repeatedly use the following estimate. For 0 < a < %, we

’BQ {p“/ﬂp”dy}

We cannot use Bo[p® — [, p*] as a test function ¢ in (10) since its trace on I'" is not regular enough in

have

o

A pady]H <Ol 2, =Cmg. (23)
Lo (Q) Q wha (Q) La () 0

general. Therefore, we split the procedure into estimates near the viscoelastic structure and estimates

in the interior of the fluid domain. To this end we fix 0 < h < % and we emphasize that constants

appearing in the calculations below may depend on h.

We shift to the moving domain Q"(¢) and we deal with the interior estimates first. Note that the
function Bq [p® — [, p* dy] shifted to Q7(t) does not vanish on its boundary I'(t) and I'(t) + 2H. For

that reason, we define a cut-off function

%(W)’ for n(t,z) <z <n(t,x) + h,
bn(t, @, 2) =41, for n(t,z) + h <z <n(t,z)+2H — h,
2Hnte)—z for n(t,z) + 2H — h < z < n(t,x) + 2H,
and
P = dnBa [PQ - /Q pe dy} ’ 24

10



where

. 2 y—1
O<a.m1n{5,2}

1

is fixed from now on. We emphasize that this choice of o ensures a < 3,

(23). Moreover due to (15) it holds
3
5/@'(7—1) <a<~vy-—1-—ky,

which will be important later.

We test the coupled momentum equation (10) by (¢, 0) to obtain

/ p Py dydt = / P’ ( / p*(t) dy) ¢n dydt

Q Q. an(t)

- / pY (Bn {pa— / p* dy] -V¢h> dydt — / pu - Oypy, dydt
Q! Q Q.

n
T

- / pu®u: Vi, dydt + S(Vu) : Ve, dydt — / pF -, dydt.
Q T QT

T Q

We proceed to bound the terms on the right-hand side. Notice that

/ pa<t>dy<< / p(t)dy> Q1B < Cmg
Qn(t) Q1 (t)

/ Y (/ p* (%) dy) ¢p dydt < CEmg.
" Qn(t)

T

and therefore

Moreover,

/ p" Ba [Pa */Pa dY] -V
Q. Q

T
< C/ 127 |1 (n ey ‘
0

dydt

Ba [pa — / p dx}
Q

(1 + 172/l oo (ry) dt
Lo (Q)

3k
< Cllp" .1z @rapym® (L+ Il 2o zarry)) < C(r) (5” : ) :

so we can use the estimate

(25)

(26)

(28)

In order to estimate the third term on the right hand side of (26), we fix 1 < p < p and ¢ > 1 such

that % + % + % = 1. Since the Bogovskii operator commutes with the derivative with respect to time,

we deduce

Ospy, = Pn0:Ba + 0y onBa

P = / p* dy}
Qn(t)

O | p* — / p* dy
Qn(t)

p = / p*dy
Qn(t)

= ¢nBao + 01 ¢ Ba

The continuity equation implies

Op® = -V - (p*u)+ (1 —)p*V -u

11

po‘—/ prdy| .
Qn(t)



which is used to estimate

BQ [Btpa — 8t pa dy
Qn(t)

L2(0,T;LP(Q7(t)))

Ba

V-(p*u)+ (a—1)p*V-u—(a—1) </m(t) pO‘V~udy>]

L2(0,T;LP (Q21(t)))
< |lp™ullL2(0,7;Lr(n())) + ClIBalp™V - ul| 20,150 (00 (1))
<Ilp*uall2(0,1;Lr (1)) + Cllp*V -l L2(0,7;L7 (@7 (1))

+Cllp?| MV -uallzzon)

S ||p ||L°°(O,T;L%(Q”(t)))||uHL2(0,T;L%(Qn(t))) Lm(OTLa (Qn(t)))

< C(k) (1 +57+%)7
where r = max{1, ;Tpp} Since

1
Ocpp, = _E"t

on the set where it is not zero, it holds that

/ pu - Oy, dydt

T

< lpllzee 0,72 coneyp 1all 20,7520 @ () 102l L2 0,7 L0 (20 (1))

<) (1+74%) (Ionlloi@p® ™ F + Iz s mymé ) < Clw) (1+E7754) . (20)

We continue with the fourth term on the right hand side of (26). Here we take ¢ = 7_217_(1 and deduce

/ pu®u: Ve, dydt

T

< HPHL’-’O(O,T;LV(Q"(:‘.)))HuHQL?(O,T;Lq(Q"(t)))Hvsoh”Loo(o,T;L%(Qn(t)))

< C(r)EH" (HVBQ [p“ — /Qp”‘ dY]

< O(k) (1 +ETTR(

+ ||V¢>h||Loc 0,T;L% (Q7(t)) )m8>

+ 14 [l

Lo (0,T5 L (Q(t)))
1% 0,722 @01 Lee(0,T;L 7 ([‘)))
<C(r)(1+ S%ﬂi)(Hpa||Lw(o,T;L%(m(t))) + 1+ In2llp2o,mmr ) + ||77tzHL2(0,T;L2(p)))

< C(r)(1 +8%+n)(1 +E5 +g%) < C(k) (1 Lt ts +g%+%)

by (21) and (22). The elliptic term satisfies

< I8VWlzz2 @ Vel 2o 7 2 (000

/ S(Vu) : Ve, dydt

<C(k)(1+€7?) (HVBQ [pa — / p” dy] .
Q L2(0.T5L % (Q7(1))

< CR) (1+E8) (167 o o102 oy + L+ Il o002 )

<C(k) (1+E%2) (1 + HpaHLw(O’T;L%(m(t))) + ||77m||L2(o,T;L2(F))) < CO(R)(1+E5T2 4 &2%).

+ IVonl

L2<o,T;Ll<m<t>>>m0>

Finally,

/ pF -, dydt
n

T

< Clpllz= oz @ IFllz20,75L=@r o) lenllL= @) < Cmg™ < C.

We observe that due to (15) and (25) the largest power of & in all of the above estimates is £

We combine these estimates to get

T
/ / P dydt < / PTG dydt < C() (14845, (30)
0 J{n+h<z<n+2H-h} Q7

12



which then gives us by the interpolation of Lebesgue spaces

T ¥
</ / o7 dydt)
0 {n+h<z<n+2H-—h}
T e T 1-6
< </ / prte dydt) </ / p dydt)
0 {n+h<z<n+2H-—h} 0 {n+h<z<n+2H-—h}

< C(r) 1+ EFF)TEamb,

where
_O0-Y0+q)
(y+a—-1)y
The choice of x and « which satisfy (15) and (25) ensures that
3Kk ~0 3Kk vy—1
1+ — =14+ =) —<1. 31
(+2>v+a <+2>7+a—1 31
We define 3 )
A T I S
" < 3 ) yta—1
which yields
T
/ / pdydt < (k) (14). (32)
0 J{n+h<z<n+2H—h}
Next, we deal with the near boundary estimates. Recall that we have fixed 0 < h < % This time
we define
z —n(t, x), for n(t,z) < z < n(t,z) + h,
en(t,x,2) = § =l (2 — (n(t,z) + b)) + h, for n(t,z) + h < z <n(t,z) +2H — h, (33)
z— (n(t,z) +2H), for n(t,z) + 2H — h < z < n(t,z) + 2H.

Note that for fixed (¢, z), ¢p (¢, x, z) is piecewise linear in the z variable with slope equal to 1 near the
boundary of the domain. We choose (¢, ) = (ppe2,0) as test functions in (10) to obtain

T
/ / p7 dydt
0 {n<z<n+h}u{n+2H—-h<z<n+2H}

h T
= 7/ / P’ dydt—/ pu - O (pnez) dydt
H—h 0 {n+h<z<n+2H—h} n
/,

T
pu®u: V(ppez)dydt —I—/ S(Vu) : V(pres) dydt — / pF - (oneqz) dydt. (34)
Qr
We use (32) to bound the first term on the right hand side. In order to bound the remaining terms, we

T Qr
use similar estimates as in the case of the interior estimates. In fact, the estimates are now more simple

as there are no terms with the Bogovskii operator and the derivatives act directly on the function ¢y

and consequently on 7. Therefore we obtain

T
/ / p? dydt < C(k) (1+51*”') +C(k) (1+5%+%+n)
0 J{n<z<n+h}U{n+2H—h<z<n+2H}

14+

+C(r) (1485 1 37% ) 4 O(w) (14 €5 +£7) <C(w) (1+67), (35)

where

Q- - =

g 72 (36)

1 1 5
n”:min{/{’,ln ta H}.

13



The conditions (15) and (25) ensure that £” > 0. We sum up (32) and (35) and we go back to Q2 to
finally deduce

/ o7 dydt < C(r) (14 €.

T

where x and £ are related through (36).

4.5 Part V - closing the estimates

We notice that for ¢ = %

ik
/ pluf® dydt < C||P||L°°(07T;L”(Q))||u||%2(0,T;Lq(Q)) < C(k) (1 +&7° ) ‘

Qr

Since % + K < 1— k" we finally obtain by previous estimates

T
/ E(s)ds < C(k) (1 n 51—*@”) < C(60) + G0
0

for any dy > 0. This together with (19) yields

£ <Oy <1 + /T E(s) ds) < Co(1 + 0o€ + C(00))
0

and, consequently,
£E<C,

where C' depends on f,F,mq, L, H, h and the choice of k. However, we can choose h = %, and the
choice of k¥ depends only on the value of vy so the constant C' in the end depends only on f,F,mg,vy, L

and H, i.e. the given data and parameters of the problem.

5 Approximate decoupled problem

We introduce the orthogonal basis of Liﬁ(O,T ) denoted by {7i(t)}ienujoy, more precisely we set for

k e NU {0}
2kt . [ 27kt
Tor(t) = cos - ) Tok+1(t) = sin - )

We denote by {s;(x)}ien the orthogonal basis of H}, ((T') N HZ(T) and by {f;(z,2)}ien the orthogonal
basis of HJ (). We define finite-dimensional spaces

Pyl = span{s; ()75 (t) h1<i<n,0<j<2m,

P}, = span{fi(z, 2)7;(t) h<i<n.o<j<om-

We fix m,n € N, we introduce parameters ¢ > 0 and § > 0, and we fix a > 5. Here, € denotes the artificial
diffusion in the continuity equation, but also denotes the penalization parameter between the trace of
the fluid velocity field on the viscoelastic beam and the velocity of the beam itself. The parameter § then
denotes an artificial pressure coefficient dp® in the momentum equation and it appears in other artificial
terms which help us to get good estimates at the beginning of the proof but have to disappear from the
equations later.

We are ready to present the approximate decoupled and penalized problem which is the starting point
of our existence proof. We fix 5 € (0, 1), our goal is to find p € ng’B(O, T, Ciﬁ(Q)) N C’#’B(O, T, ngﬁ(Q)),
ue Py andne Pyt which satisfy the following identities.

14



1. The structure momentum equation

V- €y

/ nby dadt — / Neaee dzdt — / NiaWs dzdt — / M=V 2 dedt = — [ fodadt (37)
I'r I I'r Tr € I

holds for all ¢ € P where v = V| U

n,m’

2. The damped continuity equation
Op+ V- (pu) —eAp+ep=eM, (38)

complemented with periodic boundary conditions for p holds in the classical sense in €2, where

— mo
M_Iﬂ\'

3. The fluid momentum equation

1) u-@tgodydt—i-/ pu-atgodydt—i-/ pu®u:V<pdydt+/ (pY + 6p*)V - pdydt

Qr Qr T T

7/ S(Vu):chdydtfé/ |u|2u'cpdydt75/ Vp® ¢ : Vudydt
T Qr

T

+5/ (M—p)u-godydt—/ w-@bdxdt:—/ pFs - pdydt, (39)
2 Qr € Qr

Ir

holds for all ¢ € P}ffm, where ¥ = VP and v = Yo U- Here Fs5 denotes a smooth approximation
of F.

5.1 Uniform estimates

We derive the uniform estimates for solutions to the approximate problem (37)-(39). We choose ¢ = n;
in (37), multiply (38) with ~5p7~ L, then 22-p®~! and 1|uf? and finally choose ¢ = u in (39), and then
sum up these identities to obtain

S(Vu):Vudydt+§/ |u|4dydt+/ |nm\2dmdt+€'y/ P 2|V p|? dydt
Qr

T'r Qr

Qr

] 1
+ 2 pY dydt + 56(1/ P 2|Vp|? dydt + =0 p* dydt + — / v — nreq|? dadt
y—1 Qr Qr a—1 Qr €Jrr

= fr]tdxdt—k/ pu-Fsdydt + ¢ M- 1P P’ "t dydt + &6 M—- 1 p*~tdydt
Ir T Qr v Qr a—

< ||fHL2(FT)H77tHL2(FT) + CllpllLe@rllallLa@m 1Fsl Lo @r)
gda
+ 4(7 )HPHL’Y Qr) + 4(a — 1) ||pH%a(QT) + 0(875)

1 gda )
< o)+ = L dedt + —— —lpl|%a - 4 4
<O+ [ Il dadt + Tl ) + gy lecan + 5y, (10

where we used

ol ze @ llullze @) [FsllL=(@r) < ClloliLa@mllullLi@r

eda 0, 4
< ﬁ”ﬂ”m Qr) §Hu||L4(QT) +C(e,0)

which follows from the Young inequality. Some terms on the right hand side of (40) might be absorbed
in the left hand side and thus we deduce

S(Vu):Vudydt+5/ |u|4dydt+/ |nm|2dxdt+87/ p7_2|Vp\2dydt+i/ p7 dydt
Qr Qr I'r Qr y—-1 T

4] 1
+ Eéa/ P3| Vp|? dydt + =0 p* dydt + f/ |v — niez|* dadt < C(g, 6).
T a—1 € Jrr

Qr

15



Next, we integrate (38) over 2 to deduce

d
— | p(t)dy + 6/ p(t) dy = emo,
dt Jo Q

which yields the only time-periodic solution

/Qp(t) dy = mp.

Further estimates of density are deduced by the LP — L? theory for parabolic equations applied to

the continuity equation (38). To this end, we estimate the term
V-(pu)=pV-u+u-Vp

in LP(0,T, L1(2)) using the information we already have. The term pV - u is easy, as we have bounds for
p € L%Qr) and Vu € L?(Qr). For the other term we use the bound u € L*(Qr) and Vp € L*(Qr),
where the latter follows from a straightforward manipulation with the continuity equation. Hence, we

end up with

10cpl| e 0,7519(02)) + |1 AP Lo (0, 750(0)) < CE,6)
for some p,q € (1,2), more specifically one can take p = ¢ = %. Finally, we choose ¥ = 7 in (37) to
obtain

1 1
/ [Nee|? dzdt = 7/ v - egndzdt + / ¢ dadt + / fndadt < C(g,0) + = / [Nee|? dzdt.
Tr € Jrr Tr I'r 2 Jrr

To sum up, we have the following set of estimates independent of m,n € N.

[0t llz2rr) < Cle,6),
[ullra@r) < Cle,6),
lullL2(0,7;m1 () < C(e,6),
lullz20,1;r()) < C(g,0,p), for any p € (1, 00), (41)
ol ze(@r) < C(e,0),
[10:pll e 0, 7;L9(0)) + 1ApI Lo 0,7;0902)) < Cle,6,p,q), for some p,q € (1,2),
(€,0).

Inllz20,7;m2r)) < C

5.2 Solution to the approximate problem

Lemma 5.1. Assume f € L3(I'r), u € P}

n,m?’

v(t,z) = u(t,z,M(t,xz))). Then, the following problem

and 7 € Pjtfn are given and let v = Yjpa (or equivalently

/ e dzdt + / Neaes dadt + / Newthy dadt + / m%v'ezw dedt = [ fodedt  (42)
FT FT FT 1_‘T

I'r

for all € Pty and all t € (0,T) has a unique solution n € Pyly,. Moreover, the mapping (Q,7) — n
is compact from PJ', x Pt to Pyl .

Proof. The idea is to solve (42) in 7; instead of 1. Note that, due to time periodicity of n, function 7,
must be mean-value free in time and therefore cannot contain the constant function in time from the
time basis. Therefore, we define Sy = Py = span{s;(z)}1<i<n and S := (P35, \ So, || - [|22(r,)) and the
mappings B: S xS —Randa:S— R as

B(u,v) ::/ utvdxdt—i—/ Umvmdxdt—i—/ umvmdxdt—i—/ Evdgcdt,
Tt I'r rr

rr €

a(v):/ fvd:cdt+/ YO dadt
Tr rr ¢
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where U(t,x) := fot u(s,x)ds. Then, our problem can be formulated as finding 7, = u € S such that
B(u,v) = a(v) for all v € S. Obviously, B is bi-linear and a is bounded and linear. Moreover, by
the equivalence of norms in finite basis P;'7,, one has B(u,v) < C||ul|p2(r,)||v||L2 (0. Finally, due to

time-periodicity, one has
1
B(u,u) = \|Uz||2L2(rT) + g||U||%2(rT) > CHUH2L2(FT)'

Therefore, the solution 7, = u € S follows directly by Lax-Milgram Lemma. Since fg (s, ) ds in
general does not belong to the space S due to integrals of Tox41(t), we find 7 in the form 7(t,z) =
Pg(fot ni(s,x)ds) + G(z), where Ps is a projection from P57 onto the space S and G(z) € Sy is a
solution to the elliptic equation

{"92

Ydr=— fydx
I rr ¢ I'r

for all ©p € Sp. The continuity of mapping (@,7) — 7 is a direct consequence of linearity of the
equation. 0

Lemma 5.2. (19, Lemma 2]) Let @ € PJ, . Then, there exists a unique solution p to the following
problem
Op+ V- (pa) —eAp+ep=cM.

Moreover, p € C;LO(QT; W;p(ﬂ)) for any p € (1,00), the mapping & — p is continuous and compact
Jrom P!, to W;&’p(QT) and p > 0.

Lemma 5.3. Let a € PJ,, 7 € Pyl and p € CF(0,T; W;p(ﬂ)) Then, there exists a solution
ue Pl of

1) u-@gpdydt—}-/ pﬁ-@tcpdydt—&-/ pﬁ®ﬁ:V<pdydt+/ (p7 + dp*)V - pdydt

Qr T T T

— S(Vu) : chdydt—é/ lul*u- @ dydt — ¢ Vo ® ¢ : Vadydt
Qr Qr Qr

+5/ (M—p)ﬁ-cpdydt—/ VT2 pdadt = 7/ pFs - pdydt, (43)
2 T I'r € T

for all p € P/;Im, where ¥ = Ve P and v = Yjpa - Moreover, the mapping (p,Q,7) — u is continuous
from WiP(Qr) x PiL,, x Pyt to PL,,.

Proof. The existence of solution is straightforward. Indeed, (43) may be rewritten as
Au=RHS

where )
Au=7P <5ut —V-S(Vu) + dJul?u + 5V>

where P denotes the projection to P,J:fm and RHS contains all the other terms. The operator A is a
coercive operator on ngm and the classical result then yields that A is also surjective — we refer to [42,
Theorem 2.6].

To prove the continuity, let p1, po € C3(0,T; W;’p (Q)), 4,10z € P{le and 71,72 € Pyl be given,
and let u;,uy € P,J:lm be the corresponding solutions. Denote v; = Vi Wi for i = 1,2. We take
the difference of the equation for u; tested with ¢ = (u; — uz) and the equation for uy tested with
¢ = (u; —ug). We emphasize that even though the test functions ¢ in both equations are the same, the

corresponding 1 are different in both equations, as they are traces of ¢ on different curves 7);. Since

1
1|u1 —u[* < (Jugfuy — [ug[Puy) - (ug — uy)

17



we get

5 1
S(Vu; — Vug) : V(u; — ug) dydt + Z/ lu; — ug|* dydt + g/ |vi — vo|? dedt

Qr T T

S / (plfll — pgﬁg) . at(ul — UQ) dydt —|—/ (plﬁl (2] ﬁl — p21~12 X 1~12) . V(u1 — UQ) dydt

T

+ / (p] — p3 + 0p§ — 6p3)V - (ug — uz) dydt — s/ (Vp1 — Vp2) @ (ug —ug) : Vay dydt
Qr

T

+e€ Vo ® (u1 — UQ) : V(flg - fll) dydt + = M(fll - l~12) . (111 — IIQ) dydt

Qr 2 Qr
£ - 9 ~ ~
— 5/ (pl — pg)llg . (U1 — UQ) dydt — 5/ pl(ul — UQ) . (111 — 112) dydt
T T

1
+/ (pl - p2)F§ : (ul - u2) dydt - 7/ (Vlf‘nﬁ u; — ’ylf‘ﬁz u2) . ('Y|fn‘2 uz — ’y‘f‘wﬁ u2) dxdt
Qr €Jrr
1

- g / 7|f‘n’2 us - (V\f‘nb (112 - ul) - V\f‘"ﬁ (u2 - ul)) dzdt
I'r

1 _
+- / (1t — T2t )ez - pn (u; —uy) dadt
€ Jry

1 .
+ E/ fize€2 - (Ve (U1 — U2) = Y (U1 — u2)) dzdt
I'r

where we used that

/ Y 01 - Y (W — uz) dodt — / Vi U2 - Yo (W1 — u2) dadt
r

T Ir

= / Ve a1 (Y)pon W1 — Yo U2) dwdt — / Ve U2 - (Vpon W1 — Yo U2) dvdt
FT I‘T

+ / ,Y‘f”fl up - (V‘f‘n“z Uz — ’Y|f‘n'1 u2> dzdt — / 7|f‘n'2 u - (7|f‘ﬂ'2 u; — V‘f‘ﬂ“l ul) dxdt
I'r

I'r

= / |’7|fvf1 Ui = Ve 112|2 dzdt + / (’Y\fm Ui = 9|priz 112) : (V\fn“z U2 =Vt uy) dzdt
I'p I'r
=lvi—v2|?

+/ Vi U2 - (Y pr (U2 — W) = 3o (U2 — 1)) daedt.
I'r

The convective term is treated as follows

/ (plfll @0 — p2l2 @ ﬁg) : V(ul — llz) dydt

T

< [ (p1— pof? + [ — o]?) dydt + c/ V(w1 — up) 2 dyd
Qr T

where c is taken small enough to absorb the term into the left hand side using the Korn inequality and

C depends on the functions and m,n,e,d and ¢. The remaining terms on @ are estimated in a similar
fashion. The most involved boundary term is the following

1 _ -
g/r Vpna U2+ (Vjpne (W2 — 1) = Y, (02 — wp)) dzdt < C g (7 = 72) 10201 — D2zl 0 (@) dudt
T T

1)
<C |ﬁ1 — ﬁ2|2 dxdt + 1 |L11 — llgl2 dydt,

I'r 6 Qr
by the equivalence of norms in a finite basis, where we have also used
Ve (U2 = 1) (E, @) = Ypoy (W2 — w) (8, 2) = (w2 —w) (8, 2, 71 (E, @) — (w2 — wa)(E, @, 72 (t, 7))

= (ﬁl(t7x) - ﬁQ(t’x))aZ(UQ - ul)(t’xa aﬁl(tvx) + (1 - a)ﬁg(t,l‘)), ZAS (Oa 1)7
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which follows by the mean value theorem. We estimate the other terms similarly and we end up with

1
S(Vul — VUQ) : V(u1 — 112) dydt + 1 ‘111 — 112|4 dydt + g/ |V1 — V2|2 dadt
QT QT FT

<C |vp1—vp2|2dydt+c/ lp1 — po?dydt +C [ |Gy — 6] dydt
Qr Qr Qr

o [ Jin - el dedt + c/ livs — fine|? dadt,
FT 1—‘T

so the solution mapping is continuous. O
Lemma 5.4. There exists a solution (p,u,n) to the approzimate problem (37) — (39).
Proof. We define an operator

Pt X P, — Pitr, x P!

T - n,m>
(7, 1) = (n,u),

where 1 = n(@,7) is obtained in Lemma 5.1, p = p(@) is obtained in Lemma 5.2 and u = u(p, w,7) is
the solution obtained in Lemma 5.3. As a consequence of these lemmas, mapping 7 is continuous and
it is compact.

It remains to show that the set

{(7,0) € Py, x Pl « T (7, @) = (77, @), A € [0,1]} (44)

is bounded. We denote (n,u) = T (7, 01) and emphasize that points from (44) satisfy A(n,u) = (7, @).
We test (43) by ¢ = @ = Au and (42) by ¢ = n;. Recalling p = p(i1) and making similar calculations as
in (40) we obtain

A [ S(Vu): Vudydt + A |u\4dydt+/ 7t |? dazdt
Qr Qr I'p

)
+ é‘/ P72V p|? dydt + i p7 dydt + €5a/ P2 Vp|? dydt + =04 p® dydt
T 7= 1Jgor T a—1Jgr

—|—i |v—/\nt|2dxdt+i/
13 2e

1 1
|v|2dxdt+f/ |>\V'62—77t|2dl'dt+7/ ¢ |? dadt
2e Jr., Iy 2e € Jry

I'r 2

M SM
- fntdxdt+)\/ pF5-udydt+5—71/ P’ dydt + a/ 01 dydt
Qr Y Qr

Tr T a—1
A3 22
+ | [P dadt + —/ v - eg)? dadt
2¢ Jr, 2e Jr,
where v = 7p;u. The first four terms on the right hand side can be dealt with as in (40). The last two
terms can be easily absorbed to the left hand side as A < 1. We obtain

A [ S(Vu): Vudydt + )\6/ lu|* dydt + / e | dadt < C
QT QT Tr
which provides by multiplying with suitable powers of A

S(Vﬁ):ﬁdydt+5/ |ﬁ\4dydt+/ |tz | dodt < C,
Qr r

T

Qr

hence the set (44) is bounded. The desired claim then follows by the Schaeffer fixed point theorem.
Finally, since p is a solution to (38), classical theory of parabolic equations implies Holder regularity
of p.
O
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6 Time basis limit m — oo

Denote the approximate solution obtained in previous section as (pm,Wm,7m). One obtains from
(39) and (41) that d;u,, is bounded by a constant independent from m in L(0,T;span{fi}1<i<n)-
This means that u,, is bounded in L*(0,T;span{f;}1<i<n), S0 one can again estimate Jyu,, in a
better space L;(O,T; span{f;}1<i<n), for any p < oo. Similarly, the equation (37) implies Ounm €
L%,(0,T;span{s;}1<i<n) for any p < co. This together with (41) allow us to pass to the limit m — oo
in most terms in the system (37)-(39). The following lemma allows us to pass to the limit in the trace

terms.

Lemma 6.1. Let w,, — u weakly in L3 (0,T; Hy(2)) and let 0, — n weakly in L (0,T; H,(T)) and
in Hj,(0,T; Hy, ,(T)). Then

/ o (b2 o (1, 2)) - (4 2) dadt — [ u(t, @, n(t,2) - (t, ) dadt
T'r I'r

for all ¢ € CF(T'r).

Proof. Denote G, (t,x,2) = Wy (t,x, 2z + nm(t,x)). The Sobolev embedding theorem implies (7,)y is
bounded in L*>°(T";) and therefore 4y, is bounded in Li (0,7, H#(Q)) We extract a subsequence con-
verging to some U weakly in L% (0, T; Hj (). Our aim is to identify the limit as U(t, z, 2) = a(t, , 2) :=
u(t,z,z + n(t,x)). Denote w,, := u,, — u. We have

(U, —Q)(t, 2, 2) = Wi (6, 2 + (8, ) +ult, 2, 2 + i (E, ) —ult,z, z + n(t, )

Fix ¢ € CF(Qr). Then

Wi (t, 2,2 + nm (L, 2)) - o(t, x, z) dydt = Wi (t, z,2) - @(t,x, 2 — np (¢, x)) dydt,
Qr Qr

where w,,, converges weakly in L% (0,T; Hy(2)) to zero and @(t,z, 2 — 0, (t,)) converges strongly in,
say, Li(QT) to (t,z,z — n(t,x)), since 7, — n uniformly in I'yr. The same property implies also

u(t,z,z + nm(t,x)) —ult,z,z+n(t,z)) =0 ae. in Qr.
This proves that @, — @ weakly in L% (0,T; H}(Q2)) and the claim of the Lemma follows. O

We pass to the limit m — oo in (37)-(39). We denote by (p,u,n) the limit of (pp,, Wy, N ). The tripple
(p,u,n) fulfills

pE W#p(O,T; L(Q)) N LE(0,T; W;’q(ﬂ)), for some p, q € (1,2),
ue W;p(O,T; span{f; }1<i<n), for any p < oo,
ne W;’p(O,T; span{s; }1<i<n), for any p < cc.

The structure momentum equation

/ nete daedt — / Neates dzdt — / Nea e dadt — / M=V 02 dedt = — | fodedt  (45)
Tr Tr Tr I'r € Tr
holds for all ¢ € C3°(0, T span{si}1<i<n)-
The damped continuity equation
Op+ V- (pu) —eAp+ep=cecM, (46)

holds almost everywhere in Qr.
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The fluid momentum equation

) u-@tgodydt—&-/ pu-@tgodydt—&-/ pu®u:Vgodydt+/ (P + 6p*)V - pdydt

QT T T T

- S(Vu) :chdydt—é/ |u|2u~cpdydt—6/ Vp® ¢ : Vudydt
Qr Qr QT

+5/ (M—p)u-cpdydt—/ wnﬂdxdt:—/ pFs - pdydt  (47)
2 Qr T'r € Qr

holds for all ¢ € C(0,T;span{fi}1<i<n), where ¢ = Yt and v = yp,u in both (45) and (47).

6.1 Uniform estimates independent of n

First, we take ¢ € C3°(0,7) and choose ¥ = ¢n, in (45), then multiply (46) with ﬁ(bp’y_l, then
22 $p~1 and J¢lu|? and finally choose ¢ = ¢u in (47), and then sum up these identities to obtain

T
—/ 60 (D) Es (1) dt + qu(Vu):Vudydt—i—é/ ¢|u\4dydt+/ Slmia|? dzdt
0 Qr I'r

Qr

ey | ep VP dydt + L | gprdydt+eda | ¢pt2|Vp|? dydt
QT y—1 QT QT

5 1
£0a dp? dydt + f/ oV — mpes|? dzdt =
g T'r

+
a—1 Qr

= | ¢fndadt+ [ ¢pu-Fsdydt+e Mﬁ¢p7_1dydt+56

M- gp=ldydt (48)
I'r Qr QT a—1

Qr

where

1 0 1 0 1 1
Es(t) = [ (=plu®+ Sul? v “ e -
5(t) /Q(Qplul gl e +a1p)(t)d>’+/r<2|m| + 5 leal )(t>dw (49)

Choose ¢ =1 to get

S(Vu) : Vudydt + 6 lu|* dydt + / 1t |* davdt + 57/ P 2|V p|? dydt
Qr Qr Ir QT

] 1
+ . p7 dydt + 56(1/ P 2|Vp|? dydt + =0 pdydt 4+ — / v — nreq]? daedt =
7-1 Qr T a—1 Qr € Jrr

- fmd:z:dtqt/ pu-Fsdydt ¢ | M- p~tdydt +e5 [ M—2pa=tdydt.
I'r QT QT y—1 Qr a—1

We deduce similarly to (40)

S(Vu) : Vudydt + 6/ lu|* dydt + / 1t |* dodt + E'y/ P 2|V p|? dydt
Qr Tp

Qr

Qr
J
- dydt+55a/ P Vp R dydt + 2 [ o dydt
v—1 Qr Qr a—1 Qr

1
+ g/ v — myes[2 dadt < C(e, 6).  (50)
I'r

Next, we take a sequence of ¢ — x[s,¢, We integrate over (0,7") w.r.t. s and take a supremum over ¢ to
deduce

1 /T
sup Es(t) < —/ Es(s) d8+/ | fne| dadr
te(0,T) T Jo Iz

7y

5
+/ |ou - Fs| dydr + eM (;ﬂ—l +a,o“—1) dydr. (51)
) or \7—1 a1
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The last four terms can be bounded as in (40). Moreover, (50) implies

1w 8 5, 1 3 / 1,
= = — —p% ) dydt = dzdt < C(g,9).
[ (o g+ g+ g ) s [ Gl it < (e
We choose ¥ = 7 in (45) to obtain fFT [nzz|? < C(g,6). Thus, (51) and previous estimates yield
sup FEs(t) < C(e,9). (52)
te(0,T)

We showed that (41) still holds and moreover we have additional bounds independent of n € N from
(52), namely

M2zl Lo (0,7:22(r)) < C(€,9),
17¢]] o< (0,7522(r)) < C(g,6),
[ullze0,1:22(0)) < C(e,9), (53)
(€,0)
(€,0)

Ivpull £ 0,1:22(0)) < Cle,
ol Lo 0,720 )) < Cle,

)

7 Spatial basis limit n — oo

Denote the solution obtained in previous section as (pn, Un, 7y ). The uniform bounds (41) and (53) give

rise to convergences
pn = p  weakly” in LF(0,T;L%(Q))  and weakly in WP (0,T; L% (Q)) N LE, (0, T; W' (Q)),
u, = u weakly" in L3 (0,7;L%(Q)) and weakly in L% (0,T; Hy (),
Nn —n  weakly™ in L3 (0,T; H3(T'))  and weakly in Hj (0,T; Hj, (I)),

for some p, q € (1,2). Our goal now is to pass to the limit n — oo in (45), (46), (47) and (48).

7.1 Limit in the structure momentum equation

First, (45) is a linear equation and thus the weak convergence is sufficient to claim

/ Nty dadt — / Neathes dzdt — / Neathe dadt — / M=V R dwdt = — [ fodadt,  (54)
I'r I'r I'r I'r € I'r
for all » € CFy(I'r). We have ||att'r}n||L2(O’T;(Hi,0(l“))*) < C(g,0) due to (45). This together with
Hatnn”Li(O,T;Hl(F)) < C(e,6) imply that

Oynn — Oy strongly in Li(FT). (55)

We choose ¢ = n,, in (45) and ¢ = 7 in (54) and we compare these two identities to conclude

/ 10y | ddlt — / 10,0m|? dadt, (56)
FT FT

7.2 Limit in the continuity equation

We proceed to a limit in the continuity equation. Estimates (41) and (53) yield that (upon passing to a
suitable subsequence)

Op+V-(pu) —ecAp+ep=ecM (57)
almost everywhere in Q7. We multiply (46) by p,, integrate the resulting equation over Qr and we
pass to the limit n — co. We compare the result with (57) multiplied by p and integrated over Qr. We
deduce

/ |V p,|? dydt — / |Vp|? dydt
T Qr
SO
Vo — Vp  strongly in L*(Qr). (58)
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7.3 Limit in the fluid momentum equation
We start with the observation that bounds (41) allow to bound pu in L (Qr), which in turn implies
IVpnll, 20 < C(e,d). Consequently, we use (39), to obtain
L9 (Qr)
10:((6 + Pn)un)||(L§;(0,T;W;*P(Q)))* < C(e,90)
< C(g,0) and we infer

Lo (0,T,L 3T () =
(6 + pr)unll oo (0,7, w 22 (0))+) < C(€,0) for some s < 1. This however means that
# (015 (W

for some p > 2. Moreover, uniform bounds yield [|(d + pp)u,||

(0 + pu)un = (5+p)u strongly in L3 (0, T5 (W3 *(2))") (59)

for some s < s’ < 1, and consequently by the weak convergence u,, — u in Li& (0, T H# (Q))

(pp +0)u, ®u, = (p+d)u®u weakly in Li(QT) for some p > 1. (60)
Since 0 < p:ié < land p, — pa.e. in Qr, one concludes that pfié — p—ié in L%, (Qr) for any ¢ € [1,00)
SO
p p:— (pn + 5)un Qu, = ppu, ®u, —~ puu  in Lal#(QT)

The weak convergence w, — u in L% (0,T;Hy(2)) and the strong convergence of Vp, in L% (Qr)
obtained in (58) yield

Vo, ® ¢ : Vu, dydt — Vp R @ : Vudydt,
Qr Qr

for any ¢ € C;f(QT). The remaining terms are dealt with in a straightforward fashion by means of
uniform bounds and Lemma 6.1 is used to pass to the limit in the trace term. Therefore, when we let

n — oo in (47) we end up with

0 u-@tgodydt—&-/ pu-@tgodydt—&-/ pu®u:Vgodydt+/ (Y + 5p")V - pdydt

QT T T T

- S(Vu) : Vpdydt — 5/ lul*u - ¢ dydt — 6/ Vp® ¢ : Vudydt
Qr Qr T

3

+7/ (M—p)u-cpdydt—/ w-d;dxdt:/ pFs - pdydt, (61)
2 T T'r € T

for all ¢ € CZ(Qr) and ¥ € CF(I'r) such that (¢, z,9(t, ) = (t,z) on I'r, where v =, u.

7.4 Limit in the energy inequality

The information gathered above is clearly sufficient to pass to the limit in all terms on the right hand
side of (48). In order to pass to the limit on the left hand side we first note that (55), (56) together with
(60) and the information about the sequence of densities allows us to pass to the limit in the first term
on the left hand side of (48). Finally, we assume that ¢ € Oy (0,T) satisfies moreover ¢ > 0 and we use

weak lower semicontinuity of convex functions to deduce that in the limit, (48) holds as an inequality

T
—/ Ge(t)Es(t)dt + [ ¢S(Vu) : Vudydt + & ¢|u\4dydt+/ B|nie|? dadt
0 QT QT FT
+€7/ op 72| Vp|? dydt + i/ op” dydt+s§a/ op* 2|V p|* dydt
Qr v—1 Qr Qr

eda

1
pptdydt + = | ¢|v —nmeq|? dadt < o fne dadt
g

a—1 Qr I'r I'r

+ [ dpu-Fsdydt+e | M ¢ptdydt+e5 | M- gpotdydt (62)
Qr Qr y—-1 Qr a—1

where Es is defined by (49).
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7.5 Uniform bounds independent of ¢

We use the energy inequality (62) to deduce estimates of (p,u,n) independent of €. We start by taking
¢ =11n (62) to get

/ S(Vu):Vudydt+6/ |u|4dydt+/ |ntz\2dxdt+5'y/ P 2|V p|? dydt

T T T'r Qr

5 1
+ - [ prdydt+ Eéa/ P2V dydt + L [ podydt + 7/ v — neo|? dedt
y—1 Qr T a—1 Qr € Jrr

< fny dadt + / pu-Fsdydt + ¢ Mip'y_1 dydt + €0 ZWL,O“_1 dydt. (63)
I'r T Qr v—-1 Qr a—1

The estimates here need to be more delicate than in the previous section as we no longer have directly
information about the density independent of € on the left hand side of (63). Therefore we introduce
(recall (49))

Es = sup Es(t). (64)

t€(0,T)

We take ¢ — x5, in (62), we integrate over (0,T") with respect to s and finally we take the supremum
over ¢ to get

1 (T
Es < T / Es(s)ds + fry dadt 4+ / pu - Fsdydt
0

FT T

ve | ML playdt+es | M2 petdydt. (65)
Qr v—1 Qr a—1

Our goal is therefore to bound the terms on the right-hand sides of (63) and (65). The first, third and
fourth terms on the right-hand side of (63) can be absorbed as in (40). The second term has to be

estimated in a different way. Let p > 1 be small and let ¢ = -Z~. We have

p—1°

/ pu - Fsdydt < Cl|pllLe=(o,r;zr ) lll20,7;20(0)) < CllpllLe 0,750 @) 10llL2 0,750 (@)

T

< C(s,0)(1+ &) +g ( S(Vu) : Vudydt+/ |u|4dydt)
Qr T

for s > 0 as small as we want, where we interpolated LP between L' and L®. Provided § < 1, these
terms can be absorbed so it leads to

Inm\2dwdt+€w/ P3| Vpl? dydt

T Qr

S(Vu) : Vudydt+§/ lul* dydt+/
Qr Qr r

5 1
+ T prdydt+ €5a/ P2Vt dydt + 2% [ padydt + f/ v — o2 dzdt
Y- 1 Qr Qr a—1 Qr € Jrr
< C(5,8)(1+ &2).

The last four terms on the right hand side of (65) are treated the same way, hence it remains to show

/T Es(s)ds < C(1+ &) (66)
0

for some 8 < 1.
We observe that

1 1 sy
/ 5(p+5)|u|2@1ydt+/ S Imf? dadt < C(s,5)(1 + £5°% 1 7).

T T'r

24



We multiply (46) by p and integrate over Qr to get

1
5/(p2+|Vp|2)dydt:/ —inVoudydtJr/ eMpdydt
T T

s(/Q prayar) Tl +C < ([ ayar) €00+ < 0+ o1

Next, we choose ¥ = 1 in (45) and sum up the resulting equation with (47) with the choice ¢ = nes.
Most of the calculations can be done in the same way as in Section 4.3, however we need to estimate

several additional terms multiplied by approximation parameters, namely

3g
' S mes dydt\ < CO)lalliaion Iniloimmy < Cls, )1+ £,
Qr

§S
‘ . dluf*u - nes dydt‘ < COullzs@mlnlizaws < C(s,0) (1 + € ) (Inell 2oz + Inellz2rr))
T

3 1
< Cs.8)(1+ &) + 15l 2o

<
2

/ (M — p)u-ney dydt‘ < C()(A + [lpllzoe o,7;er @) Iall 20,7529 @) 11 L2 (0, 7520 (1))
T

s 1
< C(s,0)(1+ &) + 5 Ineell 2y,

and

A Vp@(neﬂtVudydt‘ < C()IVeVpllLz@nlIVallLz@rlnll e rr)

25+ 2 1
< 0(8,5)(1—1—55 ')+176||7711H%2(I‘T)'

Eventually we end up with the estimate

/ Nee|? dzdt < C(s, 8)(1 + &),
I'r

for some 0 < s’ < 1.
It remains to show

]. 6 1"
Y a < s
/9(7_1;) A > dydt < C(s,8)(1 + &5 ), (68)

for some 0 < s” < 1 similarly to Section 4.4. To this end we use ;, defined in (24) as a test function in
(61). As above in the estimate of second spatial derivatives of 7, we obtain four more terms to estimate.
The term du - 0y, is handled similarly as pu - d;¢p;,. The remaining three additional terms are easy to

Bq {po‘ — / P dm]
Q

handle due to the estimate

<C
L=>=(Qr)

lenlin <|
which follows from (23). Therefore

§$
| [ s, dydt\ < CO)ulliu,, < Cls. )1+ 5,
T

<
2

/ (M —p)u- ¢, dydt’ < CO)(X + [lpllzeeo,mszr @) Il L2 (0,710 (0)) < C(s,6)(1 +&5),

T
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and

: / Vp® @y, - Vudydt| < CO)IVEVallLaiom IVul 2r) < Cs,0)(1+E5F5).

In the second part of this procedure we use the test function ¢ = @pes in (61) with ¢, defined in (33).
The estimates are again either similar to those in Section 4.4 or to those presented above and we recover
(68). This however means that (66) is proved which yields

& < C(9), (69)
and
S(Vu) : Vudydt + 6 lu|* dydt + / 1t |* davdt + 57/ P 2|V p|? dydt
Qr Qr I'r QT
&
+ = p7 dydt + ead P 2| Vp|* dydt + c0a / pt dydt
v-1 Qr Qr a—1 T

1
*g/ |v — nres|? dedt < C(5).  (70)
I'r

7.6 Coupled back momentum equation

We sum up the momentum equation (61) for test functions (¢, ) and the structure momentum equation
(54) for test function ¢. This way the penalization terms get cancelled and we obtain that (p, u, n) satisfy
the coupled momentum equation

1) u-@tgodydt+/ pu-@tgodydt—&-/ pu®u:Vgodydt+/ (p7 4+ 6p*)V - pdydt

QT T T T
— S(Vu) : Vpdydt — (5/ lu*u - @ dydt — 5—:/ Vp® ¢ : Vudydt + = / (M — p)u- pdydt
Qr Qr Qr 2 T

- / ney dadt — / Mo then dadt — / Meathe dardt = — / Jodedt — / pFs - odydt, (T1)
Tr Tr I'r I'r T

which holds for all ¢ € CFF(Qr) and ¢ € CFy(I'r) such that ¢(t,z,7(t,x)) = (¢, v)ex on I'r. Note
however, that at this point, the problem is still not fully coupled since we cannot ensure that n;e; = yjrnu.

7.7 Improved estimate of 7,,

The following approach comes from [40], where the improved regularity of displacement was obtained
for the interaction problem between an incompressible viscous fluid and a nonlinear Koiter shell (see
also [46, Theorem 2.2] for the compressible counterpart). We start with introducing the notation Dj 7]

defined as
U(t» T+ h) B n(tv {E)

Dill(e) = TR T,

s>0,heR.

The idea is to take s < i and test the coupled momentum equation (71) with a suitable test function to
obtain an estimate on [, |Dj [022]|? dzdt independent on h < hg for some hg > 0. The integration by
parts formula for Dj holds for periodic functions, i.e.

/F D [ul(@)v(z) dz = - / w(@)D? 0] () dz

for all periodic u, v such that the integrals are finite. We set

n(t.2) = D= DR (e, )] = o (08 =)+ n(0.1) =2 1 2) = V(0
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and use (Ypeq, 1) as a test function couple in (71) (note that this is an admissible test function because
¥ (t,0) = 0). This gives rise to

Ir

so by taking into account that (¢)ze = D2, [Dj [n(t, 2)ze]] which implies

/ 1D} s (£, )| ddlt = — / Mo (1) oa dadl,
FT 1_‘T

the proof will follow once we show that RHS is bounded.

First, note that

D, [Dgmelllle vy < Cllneellz2(ry, (72)
HDS—h[DfL[nx””LP(F) < CH77$$||L2(F)7 (73)

for any p > 1 and s < § by embedding theorems (see [44, Proposition 2] and [45, Proposition 4.6]).
Moreover, since || |2y < C(6), we get 1, € L2(0,T; Cz(I')) and thus
77t(t7 :I:h) Uiz (ta :th) — Mt (ta 0)

= e L*0,T
||z || 01

with its L?-norm bounded by C/(8). This means that for s < 7 it holds 24 € L?(0,T) and ||t2.4]| 12(0,7) <
C(9). This combined with (72) implies

1D [Dal(Wn)ellll 220,720 (1)) < Clineall 20,1522 (0)) < C(9), (74)
while (73) implies
| D2 L [D3[(n) 2]l Lo 0,70 (0)) < CliNazall o 0,7;02(r)) < C(0), (75)
for any p > 1 and s < 1. Finally, since [[Mez|lLo0,7;02(r)) < C(6) a simple first order Taylor expansion
of n yields
ba(t) < C(9)|R['72 < C(9),
=)

D% 4 [D[(@m)ll Lo (rr) < CUlnaell Lo 0,m:02(r)) + [[¥2.0llLe< (0, T)) < C(5). (76)

Now, we are ready to show that the arising terms are bounded. First, the bounds of the terms involving

time derivatives of 1}, are bounded as follows
‘/Q pu - (5t¢hez)dydt' < Cllpl|ze= 0,757 @ [allL2(0,7;00 () I DR [DR [(W0)el]ll 220,710 () < C(6)
T

for p = % by (74), and

5 \ [ w-@une) dydt] < 0% |5 ullagom D7 1 D3 2oy < C6),
’/F ne(n)t dwdt’ < |mell 2o 1D IDR[(Wn) el L2 (0py < C(9),
T

by (74) and uniform bounds. Next, the pressure term vanishes since V - (D* , [Dj [n]](z)e2) = 0. The
remaining terms all include at most one spatial derivative on v;. Let us bound only the most "difficult"

terms:

| Voo (gres): Vu dydt] < VEIVEY Iz | [nll (o VUl 2oy < C6)
QT
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by (76), and

‘/ pu@u: Vo, dydt‘ < Cllpllo.rser@pllallizo,r:0 @) 1(@n)] Lo 0.1:20 @)
T

3y

=g by (75). The remaining terms are bounded in a similar fashion, so we conclude

for p =

[ 1Dt <€)
I'r
and as a direct consequence of imbedding and uniform bound on 7 in L?(0, T; H%(T')), one finally obtains

[171| L2 (0,7 12+ (r)) < C(0) (77)

for any s < %.

8 Limit e — 0

Denote the solutions obtained in previous section as (pe, uc,7:). The uniform bounds (69) and (70) give

rise to the following weak convergencies

pe = p weakly” in L3(0,7 L% (9)),
u. —u weakly in Li(O,T; H;E(Q)),
ne —n  weakly” in L3 (0, T} H;E(F)) and weakly in Hi,k(()7 T; H#O(F)).

We pass to the limit in the equations (57), (71) and the energy inequality (62).

8.1 Limit in the continuity equation

We use nowadays standard arguments for the continuity equation to get p. — p in Cy, ([0, T]; L*(2)) and
therefore p.u. — pu weakly in LOO(O,T;L"%(Q)). Moreover, due to (67) and (69) we have eVp. — 0
in L?(Qr). We conclude that the limiting functions p and u satisfy the continuity equation in the weak

sense, i.e.

/ p(Orp+u-Vo)dydt =0

for all ¢ € CF(Qr). Since p € LF(0,T5L%(Q)) and a > 2 we further get that the renormalized

continuity equation is satisfied by p and u, i.e.

[ B0+ uVoyayar= | w7 wedya
for all functions ¢ € CP(Qr) and any b € L>(0,00) N C[0,00) such that b(0) = 0 with B(p) =

B(1) + [P "2 dz, see i.e. [20, Section 11.19)].

8.2 Limit in the coupled momentum equation

The limit in the equation (71) is more involved. The terms integrated over 'z are linear and their limits
are straightforward. Regarding the terms integrated over Qr, we start similarly as in Section 7.3, deduce
from the continuity equation that

< C(9) (78)

eVl 3, <

and we use this information to estimate

20 2,p * < .
Hat((ferPs)Us)H(L# 0. 7W2ZP (@) = C(9)
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The continuity equation implies a similar estimate for the time derivative of the density, namely

< C(9).
”atpsH(L;TO (O,T,W;'Z(Q)))* < O( )

Using this information and the fact that the sequence of velocities is bounded in L*(Qr) we get in
particular that
‘ Orpeu. - pdydt| < C(0)
Qr
for any ¢ € LQ#O(O, T, W;p(Q)) Therefore we obtain

3l10eucll (200, w2r @y < 0+ pe)Orucllp20 0,7 w2 w0y
< 19:((6 + pe)us)H(Li(’(O,T,W;’p(Q)))* + ||ua‘9tps||(L§’(0,T,W;'P(Q)))* < C(9).

This bound together with the Aubin-Lions lemma is enough to pass to the limit in the term § [, [ul*u-
pdydt. We also obtain similar convergences as in (59) and (60), where we combine the latter with the
fact that

U ®@u. >u®u in LP(Qr) for some p > 1

to pass to the limit in the convective term.

The only remaining term without properly identified limit is the pressure term. Regarding this term,
we first observe that when deriving (68), we proved that p? has a better than L' integrability in the
interior of the domain Q.. However, it is still possible that {p. }c>o might generate some concentrations

near the elastic boundary. We define

%(t’w), for n.(t,z) < z < n-(t,z) + h,
on(t iz, 2) 1= —ﬁ(z—(ﬁe(tvx)‘i'h))‘i'l, for n.(t, ) + h <z <ne(t,r) +2H — h,
M, for n.(t,z) + 2H — h < z < n.(t,x) + 2H.

We choose ¢ = ¢jes in (71) (with ¢» = 0) and we compute similarly as in (35) to get

T
/ / (p + dp2)dydt < C(§)h°, (79)
0 {n<z<n+h}u{n+2H—h<z<n+2H}

for some s > 0. Indeed, to obtain this kind of estimate it is enough to observe that all arising terms have
better than L! integrability in the space variable. Here we in particular use once again (78).

Estimate (79) means that the sequence {p) + §p%}.~¢ is uniformly integrable so there exists its weak
limit in L'(Qr) denoted as ps(p). In order to identify ps(p), one can use the standard approach on
compact subsets of Q7. based on convergence of effective viscous flux, renormalized continuity equation

and monotonicity argument (see [20]) in order to conclude that

Pe — p, a.e. in Qp.

This is enough to identify ps(p) as p7 + dp®.
Finally, let us point out that the kinematic coupling d;ne2 = yrsu is recovered due to the bound
(70). We have proved that the limit functions (p,u,n) satisfy

/ (0 + p)u- Oppdydt + / (pu®u) : Ve dydt + / (P + 5p*)(V - ) dydt

T T T

— / S(Vu) : Vpdydt + 5/ |u|2u < dydt + / My dedt — / NexVee dxdt — / Nex P dxdt
T QT FT FT FT
= - fdxdt — / pFs - pdydt (80)
FT T

for all p € CF(Qr) and ¢ € CF,(I'r) such that ¢(t,z,7(t,x)) = ¥(t,z)ez on I'r.
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8.3 Limit in the energy inequality

Our aim here is to pass to the limit in (62), where ¢ € C3°(0,T), ¢ > 0. First, it is easy to pass to the
limit on the right hand side, in particular the last two terms converge to zero. On the left hand side we

simply discard the penalization term

1
f/ |ve — (775)te2|2 dxdt,
g T'r

because it is obviously non-negative. We apply the same argument for the terms
ey [ ¢pl?Vpe|? dydt + 65a/ opt 2|V pe|? dydt.
Qr Qr
The uniform bounds (69) and (64) imply that

ey

£6
i, ¢pg dydt + —a ép® — 0dydt.

—1Jor

Next, we use the weak lower semicontinuity of convex functions to pass to the limit in the terms

#S(Vu,) : Vu. dydt + 5/ pluc|* dydt + / B|(0) e | dadt.
QT QT FT

It remains to identify the limit of the first term in (62), namely

T
| aEsoa
0

_ 1 2 4 2 1
| (Gl + G

We use the same arguments as when passing to the limit in the convective term in the coupled momentum

1) 1 1
Jr ps) ¢y dydt Jr/ (2|(776)t|2 + 2(776)96$|2) ¢y dadt.
I'r

equation to obtain
1 2 2 1 2 2
2/, (Oue]” + peluc]")¢e(t) dydt — 5 ; (6lul” + plul”)¢:(t) dydt. (81)

T T

Moreover, the a.e. convergence of {p. }.>0 and equiintegrability of {p?}.~o, imply

/ (1p2 + 5,05) ¢¢(t) dydt — ( ! i p“) ¢¢(t) dydt.
r \7 Qr Y- 1

The bound on ;1. in L?(I'z) and (77) imply Opune — Ouen strongly in L2(I'r) so

1

7/ |8m775\2q5t(t)dzdt%1/ |022m|? P¢ () daxdt.
2 I'r 2 I'r

It only remains to prove the convergence of the term involving the square of the time derivative of
7. First, we choose (p,%) = (n.e2,n.) in (71) and (p,1) = (nez,n) in (80) and we compare the two

identities to conclude that

/ (6 + pe)ue - Oynees dydt + / |0ime|? dedt — (6 + p)u- Ones dydt + / |0gn|? dedt.  (82)

T Ir Qr I'r

Moreover, the strong convergence of (§ + p.)u. — (8 + p)u in L2(0,T; H~2(Q"(t))) and the weak
convergence of u. — Ext[v.] to u — meq in L2(0,T; HE (97(t))) where Ext[v.](t,z,2) = v.(t,z) imply

/ (0 + pe)ue - (u‘E - 8t775e2) dydt

= / (6 4 pe)ue - (ue — Ext[v.]) dydt —|—/ (0 + pe)ue - (Ext[ve] — Oineeq) dydt

T

—0

— (0 +p)u- (u—mpex)dydt. (83)
Qr
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We sum up (82) and (83) and by (81) we deduce

1 1

5 / Oun.l6u(t) dadt > 5 [ oumfou() dudt
FT FT

Thus, (p,u,n) satisfies

T
—/ b¢(t)Es(t) dt + (/)S(Vu):Vudydt—i—(S/ ¢|u\4dydt+/ BNz |? dadt
0 Qr I'r

Qr

< o fny dedt + ¢pu-Fsdydt (84)
Ir Qr

for all ¢ € C2(0,T), ¢ > 0.

8.4 Estimates independent of §

At this point, one can adjust the calculations from Section 4 to take into account terms with J in (80)
in order to deduce estimates independent of 6. We only list main changes with respect to Section 4 here.
The starting point is the energy inequality (84), where we first use test function ¢ = 1 and follow Section
4.1 to get

SllulZsiqe + MaliZeomm ) + Ielli20 .z o)) < C(8)(1+ E5). (85)

Next, using the notation for Ej(t) and & introduced in (49) and (64) respectively, we take a sequence

of test functions ¢ — X[s,¢, pass to the limit with £ — oo and using calculations of Section 4.2 we get

Es <y <1+/OTE5(S)dS> .

All terms are handled similarly to their counterparts in Section 4.3, there are however two additional

terms with respect to (20). These are treated as follows

3 [ taPu s dyat| < ol Iilsen
T

< C(R)(L+ & )nellz20,mn5 ) + Inllzzo,7;z0r)) < C(R)(A +E57 ) + §||77m|\%2(rT)v

and
J ‘/ u - e dydt‘ < Cllullz20, 59 @@y Imell L2 0,00 0y < C(k) (1 +EF).
T

Eventually we recover

/ Nee|? dzdt < O(k)(1+ EFF).
I'r

Finally, (26) contain the additional term & [,,, p?**
T

dydt on the left hand side and four more terms on
the right hand side. Two terms arise from the dp® in the pressure and these terms are estimated exactly
as in (27) and (28). Next, similarly as in (29)

5 <o) (1487,

/ u - Oy, dydt
Q

n
T
and

5/ lu*u - ¢, dydt SC(l—I—EJ%)
Q

n
T

We then continue as in Section 4.4 and end with (30) and thanks to the choice of parameters «, k we

get (32). We want a similar bound also for dp®, however we can not use the same combination of
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parameters « and &, because the inequality (31) might not hold if «y is replaced by a. Therefore, we next

set k 1= ﬁ and a := %, repeat the calculations of Sections 4.1-4.3 and Section 4.4 in order to deduce

T .
5/ / P+ dydt < 5/ P, dydt < C(R) (1 + 5§+%) .
0 {n+h<z<n+2H-—h} Q;
By interpolation

T
5/ / prdydt < () (1+ &), (86)
0 {n+h<z<n+2H-—h}

3K a—1
Flo=1-(1+2) 2=
" (+2)a+a—1

We continue with estimates of the pressure near the boundary using the function (33). Again, we

where

encounter some additional terms in equation (34). To be more precise, terms dp® appear both on the
left hand side and in the first term on the right hand side. The left hand side provides the information
we seek, while the term on the right hand side is bounded using (86). The integrals of du - 9;(ppez) and
Slul*u - (pre2) yield the powers £F and 55%, respectively. Hence, we conclude that there exists x” > 0
such that

/ pY 4 6p% dydt < C (1 n 51—*”’) :

T

Finally, in Section 4.5 we estimate & fQT lu|? by (85) and we obtain

& < C, S(Vu) : Vudydt + 6/ lul* dydt +/ Nz |? dzdt < C. (87)
Qr Qr T

T
Similarly to Section 7.7, we obtain
191172 0,75 11242 1)) < Cs (88)

for some s > 0.

9 Limit 6 —0

Denote the solution obtained in previous section as (ps,us,n5). The goal is to pass to the limit 6 — 0
to conclude that the limiting functions (p,u,n) represent a weak solution in the sense of Definition 2.1.
The uniform estimates deduced in Section 8.4 give rise to the following convergencies

ps — p weakly” in LF(0,T; L, (Q)),

us —~u weakly in Li(O,T; H;&(Q)),

ns —n  weakly” in L3 (0, T; H;&(F)) and weakly in H;&(O,T; H#O(F)).

9.1 Limit in the continuity equation

We employ standard arguments from the existence theory of weak solutions to the compressible Navier-
Stokes equations (see i.e. [20]) to deduce that functions p and u satisfy the continuity equation in the

weak sense, i.e.

/ p(Orp+u-Vy)dzdt =0

for all p € CF°(Qr). The validity of the renormalized continuity equation remains open at this moment

since p may not possess enough regularity to use a direct argument.
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9.2 Limit in the coupled momentum equation

First, the kinematic coupling u(t,x, (¢, x)) = n:(t,x)eq is recovered using Lemma 6.1. Our aim is to
pass with ¢ to zero in (80). Once again, the terms integrated over I'y are linear and therefore their
limits are straightforward. Estimates (87) are enough to identify 0 as a limit of terms fQT ou - Opp dydt
and fQT Slu*u - pdydt. The limit in the last term on the right hand side is easy. In the remaining
terms we follow the existence theory of weak solutions to the compressible Navier-Stokes equations and
the main task is to deduce the limit in the pressure term, which is closely related to the validity of the
renormalized continuity equation. Both issues are solved by means of the effective viscous flux identity
and boundedness of the oscillations defect measure. We get the pointwise convergence of ps — p a.e. in
Q1 and thus recover both (9) and (10).

9.3 Limit in the energy inequality

Finally we need to pass to the limit in (84) in order to prove (11). The limits of the terms on the right
hand side are simple. On the left hand side we simply discard the term 9 fQT plu|?* since it is surely
nonnegative and for the second and fourth term on the left hand since we use lower semicontinuity of
convex functions. Therefore it remains to deal with the first term on the left hand side. First, the kinetic
energy term is treated the same way as the convective term in the coupled momentum equation. Next,
it is easy to use (87) to pass to zero in the term containing d|u|?. Pointwise convergence of densities
allows us to pass to the limit in the pressure terms of F5. Improved estimate (88) allows us to pass to
the limit in the last term of Ej, while a similar procedure as in (82)-(83) provides necessary information
to pass to the limit in the term |7;|? of Es. Thus we recover (11). The validity of (12) follows from the

calculations in Section 4 with the starting point being the energy inequality (11).
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